JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITE TIME BLOWUP FOR THE FOURTH-ORDER NLS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITE TIME BLOWUP FOR THE FOURTH-ORDER NLS
Cho, Yonggeun; Ozawa, Tohru; Wang, Chengbo;
  PDF(new window)
 Abstract
We consider the fourth-order equation with focusing inhomogeneous nonlinearity () in high space dimensions. Extending Glassey`s virial argument, we show the finite time blowup of solutions when the energy is negative.
 Keywords
finite time blowup;mass-critical;fourth order NLS;virial argument;
 Language
English
 Cited by
1.
A weak form of the soliton resolution conjecture for high-dimensional fourth-order Schrödinger equations, Journal of Hyperbolic Differential Equations, 2017, 14, 02, 249  crossref(new windwow)
 References
1.
M. Ben-Artzi, H. Koch, and J.-C. Saut, Dispersion estimates for fourth order Schrodinger equations, C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), no. 2, 87-92. crossref(new window)

2.
G. Baruch and G. Fibich, Singular solutions of the $L^2$-supercritical biharmonic noninear Schrodinger equation, Nonlinearity 24 (2011), no. 6, 1843-1859. crossref(new window)

3.
G. Baruch, G. Fibich, and E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrodinger equation, SIAM J. Appl. Math. 70 (2010), no. 8, 3319-3341. crossref(new window)

4.
L. Berge, Soliton stability versus collapse, Phys. Rev. E (3) 62 (2000), no. 3, 3071-3074.

5.
J. L. Bona, G. Ponce, J.-C. Saut, and C. Sparber, Dispersive blow-up for nonlinear Schrodinger equations revisited, J. Math. Pures Appl. 102 (2014), no. 4, 782-811. crossref(new window)

6.
R. Carles and E. Moulay, Higher order Schrodinger equations, J. Phys. A 45 (2012), no. 39, 395304, 11 pp. crossref(new window)

7.
R. Carles and E. Moulay, Higher oerder Schrodinger and Hartee-Fock equations, in preprint (arXiv: 1305.4880). crossref(new window)

8.
T. Cazenave, Semilinear Schrodinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

9.
M. Chae, S. Hong, and S. Lee, Mass concentration for the $L^2$-critical nonlinear Schrodinger equations of higher orders, Discrete Contin. Dyn. Syst. 29 (2011), no. 3, 909-928.

10.
Y. Cho, G. Hwang, S. Kwon, and S. Lee, On the finite time blowup for mass-critical Hartree equations, to appear in Proc. Roy. Soc. Edinburgh Sect. A (arXiv:1208.2302).

11.
Y. Cho, T. Ozawa, and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), no. 4, 1121-1128. crossref(new window)

12.
G. Fibich, B. Ilan, and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math. 62 (2002), no. 4, 1437-1462. crossref(new window)

13.
J. Frohlich and E. Lenzmann, Blow-up for nonlinear wave equations describing Boson stars, Comm. Pure Appl. Math. 60 (2007), no. 11, 1691-1705. crossref(new window)

14.
R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. crossref(new window)

15.
V. I. Karpman, Stabilization of soliton instability by high-order dispersion: fourth order nonlinear Schrodinger-type equations, Phys. Rev. E 53 (1996), 1336-1339. crossref(new window)

16.
V. I. Karpman and S. G. Shagalov, Stability of soliton described by nonlinear Schrodinger type equations with higher-order dispersion, Phys. D 144 (2000), no. 1-2, 194-210. crossref(new window)

17.
C. Miao, G. Xu, and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrdinger equations of fourth order in the radial case, J. Differential Equations 246 (2009), no. 9, 3715-3749. crossref(new window)

18.
T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrodinger equation, J. Differential Equations 92 (1991), no. 2, 317-330. crossref(new window)

19.
B. Pausader, Global well-posedness for energy critical fourth-order Schrodinger equations in the radial case, Dyn. Partial Differ. Equ. 4 (2007), no. 3, 197-225. crossref(new window)

20.
B. Pausader, The cubic fourth-order Schrodinger equation, J. Funct. Anal. 256 (2009), no. 8, 2473-2517. crossref(new window)

21.
B. Pausader, The focusing energy-critical fourth-order Schrodinger equation with radial data, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1275-1292. crossref(new window)

22.
J. Segata, Modified wave operators for the fourth-order nonlinear Schrodinger-type equation with cubic nonlinearity, Math. Methods Appl. Sci. 26 (2006), no. 15, 1785-1800.

23.
S. H. Zhu, J. Zhang, and H. Yang, Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrodinger equation, Dyn. Partial Differ. Equ. 7 (2010), no. 2, 187-205. crossref(new window)

24.
S. H. Zhu, J. Zhang, and H. Yang, Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation, Nonlinear Anal. 74 (2011), no. 17, 6186-6201. crossref(new window)