JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEAK SOLUTIONS FOR THE HAMILTONIAN BIFURCATION PROBLEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEAK SOLUTIONS FOR THE HAMILTONIAN BIFURCATION PROBLEM
Choi, Q-Heung; Jung, Tacksun;
  PDF(new window)
 Abstract
We get a theorem which shows the multiple weak solutions for the bifurcation problem of the superquadratic nonlinear Hamiltonian system. We obtain this result by using the variational method, the critical point theory in terms of the -invariant functions and the -invariant linear subspaces.
 Keywords
Hamiltonian system;bifurcation problem;superquadratic nonlinearity;variational method;critical point theory;-invariant function;-invariant subspace; condition;
 Language
English
 Cited by
 References
1.
K. C. Chang, Infinite dimensional Morse Theory and Multiple Solution Problems, Birkhauser, 1993.

2.
M. Degiovanni and L. Olian Fannio, Multiple periodic solutions of asymptotically linear Hamiltonian systems, Quaderni Sem. Mat. Brescia 8/93, 1993.

3.
T. Jung and Q. H. Choi, Existence of four solutions of the nonlinear Hamiltonian system with nonlinearity crossing two eigenvalues, Boundary Value Problems 2008 (2008), 1-17.

4.
T. Jung and Q. H. Choi, On the number of the periodic solutions of the nonlinear Hamiltonian system, Nonlinear Anal. 71 (2009), no. 12, e1100-e1108. crossref(new window)

5.
T. Jung and Q. H. Choi, Periodic solutions for the nonlinear Hamiltonian systems, Korean J. Math. 17 (2009), no. 3, 331-340.