JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TOEPLITZ OPERATORS ON GENERALIZED FOCK SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TOEPLITZ OPERATORS ON GENERALIZED FOCK SPACES
Cho, Hong Rae;
  PDF(new window)
 Abstract
We study Toeplitz operators on generalized Fock spaces with a locally finite positive Borel measures as symbols. We characterize operator-theoretic properties (boundedness and compactness) of in terms of the Fock-Carleson measure and the Berezin transform .
 Keywords
generalized Fock space;Fock-Carleson measure;Toeplitz operator;Berezin transform;
 Language
English
 Cited by
 References
1.
M. Christ, On the $\bar{\partial}$ equation in weighted $L^{2}$ norms in C, J. Geom. Anal. 1 (1991), no. 3, 193-230. crossref(new window)

2.
O. Constantin and J. Ortega-Cerda, Some spectral properties of the canonical solution operator to $\bar{\partial}$ on weighted Fock spaces, J. Math. Anal. Appl. 377 (2011), no. 1, 353-361. crossref(new window)

3.
O. Constantin and J. A. Pelaez, Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, Available at arXiv:1304.7501v2.

4.
J. Isralowitz and K. Zhu, Toeplitz operators on the Fock space, Integral Equations Operator Theory 66 (2010), no. 4, 593-611. crossref(new window)

5.
N. Marco, X. Massaneda, and J. Ortega-Cerda, Interpolating and sampling sequences for entire functions, Geom. Funct. Anal. 13 (2003), no. 4, 862-914. crossref(new window)

6.
J. Marzo and J. Ortega-Cerda, Pointwise estimates for the Bergman kernel of the weighted Fock space, J. Geom. Anal. 19 (2009), no. 4, 890-910. crossref(new window)

7.
V. L. Oleinik, Imbedding theorems for weighted classes of harmonic and analytic functions, J. Soviet. Math. 9 (1978), 228-243. crossref(new window)

8.
A. P. Schuster and D. Varolin, Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces, Integr. Equ. Oper. Theory 72 (2012), no. 3, 363-392. crossref(new window)

9.
K. Seip and E. H. Youssfi, Hankel operators on Fock spaces and related Bergman kernel estimates, J. Geom. Anal. 23 (2013), no. 1, 170-201. crossref(new window)

10.
K. Zhu, Analysis on Fock Spaces, Springer GTM 263, New York, 2012.