JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A RECURSIVE METHOD FOR DISCRETELY MONITORED GEOMETRIC ASIAN OPTION PRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A RECURSIVE METHOD FOR DISCRETELY MONITORED GEOMETRIC ASIAN OPTION PRICES
Kim, Bara; Kim, Jeongsim; Kim, Jerim; Wee, In-Suk;
  PDF(new window)
 Abstract
We aim to compute discretely monitored geometric Asian option prices under the Heston model. This method involves explicit formula for multivariate generalized Fourier transform of volatility process and their integrals over different time intervals using a recursive method. As numerical results, we illustrate efficiency and accuracy of our method. In addition, we simulate scenarios which show evidently practical importance of our work.
 Keywords
discrete monitoring;geometric Asian option;Heston model;generalized Fourier transform;
 Language
English
 Cited by
1.
Pricing Asian options of discretely monitored geometric average in the regime-switching model, Applied Stochastic Models in Business and Industry, 2016, 32, 6, 743  crossref(new windwow)
 References
1.
G. S. Bakshi, C. Cao, and Z. W. Chen, Empirical performance of alternative option pricing models, J. Financ. 2 (1997), no. 2, 2003-2049.

2.
P. P. Boyle and A. Potapchikb, Prices and sensitivities of Asian options: A survey, Insurance Math. Econom. 42 (2008), no. 1,189-211. crossref(new window)

3.
N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model, Oper. Res. 60, (2012), no. 1, 64-77. crossref(new window)

4.
A. Cerny and I. Kyriakou, An improved convolution algorithm for discretely sampled Asian options, Quant. Finance 11 (2011), no. 3, 381-389. crossref(new window)

5.
D. Duffie, D. Filipovic, and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab. 13 (2003), no. 3, 984-1053. crossref(new window)

6.
D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68 (2000), no. 6, 1343-1376. crossref(new window)

7.
G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Levy processes, J. Bank. Financ. 32 (2008), no. 10, 2076-2088. crossref(new window)

8.
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bonds and currency options, Rev. Financ. Stud. 6 (1993), no. 2, 327-343. crossref(new window)

9.
W. Kang and C. Kang, Large deviations for affine diffusion processes on $\mathbb{R}^m_+\;{\times}\;\mathbb{R}^n$, Stochastic Process. Appl. 124 (2014), no. 6, 2188-2227. crossref(new window)

10.
J. Kim, B. Kim, K.-S. Moon, and I.-S. Wee, Valuation of power options under Heston's stochastic volatility model, J. Econom. Dynam. Control 36 (2012), no. 11, 1796-1813. crossref(new window)

11.
B. Kim and I.-S. Wee, Pricing of geometric Asian options under Heston's stochastic volatility model, Quant. Financ. 14 (2014), 1795-1809. crossref(new window)

12.
N. Tahani, Exotic geometric average options pricing under stochastic volatility, Appl. Math. Finance 20 (2013), no. 3, 229-245. crossref(new window)

13.
Y. Umezawa and A. Yamazaki, Pricing path-dependent options with discrete monitoring under time-changed Levy processes, Appl. Math. Finance 22 (2015), no. 2, 133-161. crossref(new window)