JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON NONTOPOLOGICAL SOLUTIONS IN THE SELF-DUAL CHERN-SIMONS GAUGED O(3) SIGMA MODELS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REMARKS ON NONTOPOLOGICAL SOLUTIONS IN THE SELF-DUAL CHERN-SIMONS GAUGED O(3) SIGMA MODELS
Choi, Nari; Han, Jongmin;
  PDF(new window)
 Abstract
In this paper, we prove the existence of nontopological solutions to the self-dual equations arising from the Chern-Simons gauged O(3) sigma models. The property of solutions depends on a parameter appearing in the nonlinear term. The case ${\tau}
 Keywords
Chern-Simons gauged O(3) sigma model;nontopological solutions;
 Language
English
 Cited by
 References
1.
D. Chae and O. Y. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000), no. 1, 119-142. crossref(new window)

2.
H. Chan, C.-C. Fu, and C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys. 231 (2002), no. 2, 189-221. crossref(new window)

3.
X. Chen, S. Hastings, J. B. McLeod, and Y. Yang, A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. Roy. Soc. London Ser. A 446 (1994), no. 1928, 453-478. crossref(new window)

4.
K. Choe, Existence of nontopological solutions in the Chern-Simons gauged O(3) sigma models, Preprint.

5.
K. Choe and J. Han, Existence and properties of radial solutions in the self-dual ChernSimons O(3) sigma model, J. Math. Phys. 52 (2011), no. 8, 082301, 20 pp.

6.
K. Choe, J. Han, and C.-S. Lin, Bubbling solutions for the Chern-Simons gauged O(3) sigma model in $\mathbb{R}^2$, Discrete Contin. Dyn. Syst. 34 (2014), no. 7, 2703-2728.

7.
K. Choe, J. Han, C.-S. Lin, and T.-C. Lin, Uniqueness and solution structure of nonlinear equations arising from the Chern-Simons gauged O(3) sigma models, J. Differential Equations 255 (2013), no. 8, 2136-2166. crossref(new window)

8.
K. Choe, N. Kim, and C.-S. Lin, Existence of self-dual non-topological solutions in the Chern-Simons Higgs model, Ann. Inst. H. Poincare Anal. Non Lineaire 28 (2011), no. 6, 837-852. crossref(new window)

9.
K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1) model, Nonlinear Anal. 66 (2007), no. 12, 2794-2813. crossref(new window)

10.
J. Han and H. Huh, Existence of solutions to the self-dual equations in the Maxwell gauged O(3) sigma model, J. Math. Anal. Appl. 386 (2012), no. 1, 61-74. crossref(new window)

11.
J. Hong, Y. Kim, and P. Y. Pac, Multi-vortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990), no. 19, 2230-2233. crossref(new window)

12.
R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), no. 19, 2234-2237. crossref(new window)

13.
K. Kimm, K. Lee, and T. Lee, Anyonic Bogomol'nyi solitons in a gauged O(3) sigma model, Phys. Rev. D 53 (1996), 4436-4440. crossref(new window)

14.
W.-M. Ni, On the elliptic equation ${\Delta}u$+$K(x)u^{(n+1)/(n-2)}$ = 0, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493-529. crossref(new window)

15.
J. Spruck and Y. Yang, The existence of nontopological solitons in the self-dual ChernSimons theory, Comm. Math. Phys. 149 (1992), no. 2, 361-376. crossref(new window)

16.
G. Tarantello, Selfdual Gauge Field Vortices, Progress in Nonlinear Differential Equations and their applicatitons Vol 72, Birkhauser, 2008.

17.
Y. Yang, The existence of solitons in gauged sigma models with broken symmetry: Some remarks, Lett. Math. Phys. 40 (1997), no. 2, 177-189. crossref(new window)