JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GORENSTEIN DIMENSIONS OF UNBOUNDED COMPLEXES UNDER BASE CHANGE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GORENSTEIN DIMENSIONS OF UNBOUNDED COMPLEXES UNDER BASE CHANGE
Wu, Dejun;
  PDF(new window)
 Abstract
Transfer of homological properties under base change is a classical field of study. Let be a ring homomorphism. The relations of Gorenstein projective (or Gorenstein injective) dimensions of unbounded complexes between (or ) and X are considered, where X is an R-complex and U is an S-complex. In addition, some sufficient conditions are given under which the equalities $G-dim_S(U{\otimes}^L_RX)
 Keywords
complete projective resolution;Gorenstein projective dimension;local ring homomorphism;depth of complex;
 Language
English
 Cited by
 References
1.
J. Asadollahi and S. Salarian, Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings, Comm. Algebra 34 (2006), no. 8, 3009-3022. crossref(new window)

2.
L. L. Avramov and H-B. Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129-155. crossref(new window)

3.
L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math. 1747. Springer, Berlin, 2000.

4.
L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and flat dimensions-A functorial description with applications, J. Algebra 302 (2006), no. 1, 231-279. crossref(new window)

5.
L. W. Christensen and H. Holm, Ascent properties of Auslander categories, Canad. J. Math. 61 (2009), no. 1, 76-108. crossref(new window)

6.
L. W. Christensen and D. A. Jorgensen, Vanishing of Tate homology and depth formulas over local rings, J. Pure Appl. Algebra 219 (2015), no. 3, 464-481. crossref(new window)

7.
L. W. Christensen and S. Sather-Wagstaff, Transfer of Gorenstein dimensions along ring homomorphisms, J. Pure Appl. Algebra 214 (2010), no. 6, 982-989. crossref(new window)

8.
H.-B. Foxby and S. Iyengar, Depth and amplitude for unbounded complexes, Commutative algebra (Grenoble/Lyon, 2001), 119-137, Contemp. Math., 331, Amer. Math. Soc., Providence, RI, 2003.

9.
Z. Liu and Wei Ren, Transfer of Gorenstein dimensions of unbounded complexes along ring homomorphisms, Comm. Algebra 42 (2014), no. 8, 3325-3338. crossref(new window)

10.
O. Veliche, Gorenstein projective dimension for complexes, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1257-1283.

11.
D. Wu, Gorenstein dimensions over ring homomorphisms, Comm. Algebra 43 (2015), no. 5, 2005-2028. crossref(new window)

12.
D. Wu and Z. Liu, Vanishing of Tate cohomology and Gorenstein injective dimension, Comm. Algebra 42 (2014), no. 5, 2181-2194. crossref(new window)