JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY ANALYSIS OF REGULARIZED VISCOUS VORTEX SHEETS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY ANALYSIS OF REGULARIZED VISCOUS VORTEX SHEETS
Sohn, Sung-Ik;
  PDF(new window)
 Abstract
A vortex sheet is susceptible to the Kelvin-Helmhotz instability, which leads to a singularity at finite time. The vortex blob model provided a regularization for the motion of vortex sheets in an inviscid fluid. In this paper, we consider the blob model for viscous vortex sheets and present a linear stability analysis for regularized sheets. We show that the diffusing viscous vortex sheet is unstable to small perturbations, regardless of the regularization, but the viscous sheet in the sharp limit becomes stable, when the regularization is applied. Both the regularization parameter and viscosity damp the growth rate of the sharp viscous vortex sheet for large wavenumbers, but the regularization parameter gives more significant effects than viscosity.
 Keywords
vortex sheet;viscous diffusion;blob-regularization;linear stability;
 Language
English
 Cited by
 References
1.
D. W. Ambrose, Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal. 35 (2003), no. 1, 211-244. crossref(new window)

2.
G. R. Baker and M. J. Shelley, On the connection between thin vortex layers and vortex sheets, J. Fluid Mech. 215 (1990), 161-194. crossref(new window)

3.
G. Birkhoff, Helmholtz and Taylor instability, Proceedings of Symposia in Applied Mathematics, Vol. XIII, 55-76, American Mathematical Society, Providence, 1962.

4.
W.-S. Dai and M. J. Shelley, A numerical study of the effect of surface tension and noise on an expanding Hele-Shaw bubble, Phys. Fluids A 5 (1993), 2131-2146. crossref(new window)

5.
J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553-586. crossref(new window)

6.
M. R. Dhanak, Equation of motion of a diffusing vortex sheet, J. Fluid Mech. 269 (1994), 265-281. crossref(new window)

7.
M. A. Fontelos and F. de la Hoz, Singularities in water waves and the Rayleigh-Taylor problem, J. Fluid Mech. 651 (2010), 211-239. crossref(new window)

8.
T. Y. Hou, G. Hu, and P. Zhang, Singularity formation in three-dimensional vortex sheets, Phys. Fluids 15 (2003), no. 1, 147-172. crossref(new window)

9.
F. de la Hoz, M. A. Fontelos, and L. Vega, The effect of surface tension on the Moore singularity of vortex sheet dynamics, J. Nonlinear Sci. 18 (2008), no. 4, 463-484. crossref(new window)

10.
S.-C. Kim, Evolution of a two-dimensional closed vortex sheet in a potential flow, J. Korean Phys. Soc. 46 (2005), 848-854.

11.
R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech. 167 (1986), 65-93. crossref(new window)

12.
R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys. 65 (1986), 292-313. crossref(new window)

13.
J.-G. Liu and Z. Xin, Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data, Comm. Pure Appl. Math. 48 (1995), no. 6, 611-628. crossref(new window)

14.
A. J. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J. 42 (1993), no. 3, 921-939. crossref(new window)

15.
D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. Roy. Soc. London Ser. A 365 (1979), no. 1720, 105-119. crossref(new window)

16.
M. Nitsche, Singularity formation in a cylindrical and a spherical vortex sheet, J. Comput. Phys.173 (2001), 208-230. crossref(new window)

17.
T. Sakajo, Formation of curvature singularity along vortex line in an axisymmetric vortex sheet, Phys. Fluids 14 (2002), 2886-2897. crossref(new window)

18.
T. Sakajo and H. Okamoto, An application of Draghicescu's fast summation method to vortex sheet motion, J. Phys. Soc. Japan 67 (1998), 462-470. crossref(new window)

19.
M. J. Shelley, A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method, J. Fluid Mech. 244 (1992), 493-526. crossref(new window)

20.
S. Shin, S.-I. Sohn, and W. Hwang, Simple and efficient numerical methods for vortex sheet motion with surface tension, Internat. J. Numer. Methods Fluids 74 (2014), no. 6, 422-438. crossref(new window)

21.
S.-I. Sohn, Singularity formation and nonlinear evolution of a viscous vortex sheet model, Phys. Fluids 25 (2013), 014106. crossref(new window)

22.
S.-I. Sohn, Two vortex-blob regularization models for vortex sheet motion, Phys. Fluids 26 (2014), 044105. crossref(new window)

23.
G. Tryggvason, W. J. A. Dahm, and K. Sbeih, Fine structure of vortex sheet rollup by viscous and inviscid simulation, ASME J. Fluids Eng. 113 (1991), 31-36. crossref(new window)

24.
S. Wu, Mathematical analysis of vortex sheets, Comm. Pure Appl. Math. 59 (2006), no. 8, 1065-1206. crossref(new window)