JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II
Cho, Dong Hyun;
  PDF(new window)
 Abstract
In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.
 Keywords
analogue of Wiener measure;conditional analytic Feynman integral;conditional analytic Wiener integral;operator-valued Feynman integral;simple formula for conditional expectation;Wiener space;
 Language
English
 Cited by
 References
1.
R. H. Cameron and D. A. Storvick, An operator-valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517-552.

2.
R. H. Cameron and D. A. Storvick, An operator-valued function space integral applied to integrals of functions of class $L_{1}$, Proc. London Math. Soc. (3) 27 (1973), 345-360.

3.
R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), pp. 18-67, Lecture Notes in Math., 798, Springer, Berlin-New York, 1980.

4.
D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795-3811. crossref(new window)

5.
D. H. Cho, Operator-valued Feynman integral via conditional Feynman integrals on a function space, Cent. Eur. J. Math. 8 (2010), no. 5, 908-927. crossref(new window)

6.
D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438. crossref(new window)

7.
D. M. Chung, C. Park, and D. Skoug, Operator-valued Feynman integrals via conditional Feynman integrals, Pacific J. Math. 146 (1990), no. 1, 21-42. crossref(new window)

8.
G. B. Folland, Real Analysis, John Wiley & Sons, New York, 1984.

9.
M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819. crossref(new window)

10.
G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral: the $L_{1}$ theory, J. Math. Anal. Appl. 50 (1975), 647-667. crossref(new window)

11.
K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951. crossref(new window)