JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED CAYLEY GRAPH OF UPPER TRIANGULAR MATRIX RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED CAYLEY GRAPH OF UPPER TRIANGULAR MATRIX RINGS
Afkhami, Mojgan; Hashemifar, Seyed Hosein; Khashyarmanesh, Kazem;
  PDF(new window)
 Abstract
Let R be a commutative ring with the non-zero identity and n be a natural number. is a simple graph with as the vertex set and two distinct vertices X and Y in are adjacent if and only if there exists an lower triangular matrix A over R whose entries on the main diagonal are non-zero such that $AX^t
 Keywords
Cayley graph;matrix ring;
 Language
English
 Cited by
 References
1.
M. Afkhami, S. Bahrami, K. Khashyarmanesh, and F. Shahsavar, The annihilating-ideal graph of a lattice, Georgian Math. J. 23 (2016), no. 1, 1-7. crossref(new window)

2.
M. Afkhami, K. Khashyarmanesh, and Kh. Nafar, Generalized Cayley graphs associated to commutative rings, Linear Algebra Appl. 437 (2012), no. 3, 1040-1049. crossref(new window)

3.
D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), no. 8, 3073-3092. crossref(new window)

4.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.

5.
I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009), no. 17, 5381-5392. crossref(new window)

6.
A. V. Kelarev, Directed graphs and nilpotent rings, J. Austral. Math. Soc. Ser. A 65 (1998), no. 3, 326-332. crossref(new window)

7.
A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin. 25 (2002), 73-78.

8.
A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.

9.
A. V. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30 (2004), 95-101.

10.
A. V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup Forum 72 (2006), no. 3, 411-418. crossref(new window)

11.
A. V. Kelarev and C. E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24 (2003), no. 1, 59-72. crossref(new window)

12.
A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contributions to general algebra, 12 (Vienna, 1999), 229-235, Heyn, Klagenfurt, 2000.

13.
A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra 251 (2002), no. 1, 16-26. crossref(new window)

14.
A. V. Kelarev, J. Ryan, and J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 (2009), no. 17, 5360-5369. crossref(new window)

15.
T. Y. Lam, A First Course in Noncommutative Rings, 2nd Graduate tex in mathematics 131, Springer-Verlag, New York, 2001.

16.
H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20. crossref(new window)