JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON DEGENERATE q-BERNOULLI POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON DEGENERATE q-BERNOULLI POLYNOMIALS
Kim, Taekyun;
  PDF(new window)
 Abstract
In this paper, we introduce the degenerate Carlitz q-Bernoulli numbers and polynomials and give some interesting identities and properties of these numbers and polynomials which are derived from the generating functions and p-adic integral equations.
 Keywords
q-Bernoulli polynomial;degenerate Bernoulli polynomials;q-Volkenborn integral;
 Language
English
 Cited by
1.
Degenerate Laplace transform and degenerate gamma function, Russian Journal of Mathematical Physics, 2017, 24, 2, 241  crossref(new windwow)
2.
The modified degenerate q-Bernoulli polynomials arising from p-adic invariant integral on Z p $\mathbb{Z}_{p}$, Advances in Difference Equations, 2017, 2017, 1  crossref(new windwow)
3.
On modified degenerate Carlitz q-Bernoulli numbers and polynomials, Advances in Difference Equations, 2017, 2017, 1  crossref(new windwow)
 References
1.
A. Bayad and T. Kim, Higher recurrences for Apostol-Bernoulli-Euler numbers, Russ. J. Math. Phys. 19 (2012), no. 1, 1-10. crossref(new window)

2.
L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. crossref(new window)

3.
L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7 (1956), 28-33. crossref(new window)

4.
L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.

5.
J. Choi, T. Kim, and Y. H. Kim, A note on the extended q-Bernoulli numbers and polynomials, Adv. Stud. Contemp. Math. 21 (2011), no. 4, 351-354.

6.
D. Kang, S. J. Lee, J.-W. Park, and S.-H. Rim, On the twisted weak weight q-Bernoulli polynomials and numbers, Proc. Jangjeon Math. Soc. 16 (2013), no. 2, 195-201.

7.
D. S. Kim, N. Lee, J. Na, and K. H. Park, Abundant symmetry for higher-order Bernoulli polynomials (I), Adv. Stud. Contemp. Math. 23 (2013), no. 3, 461-482.

8.
T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.

9.
T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coef- ficients, Russ. J. Math. Phys. 15 (2007), 51-57.

10.
T. Kim, On the weighted q-Bernoulli numbers and polynomials, Adv. Stud. Contemp. Math. 21 (2011), no. 2, 201-2015.

11.
J. W. Park, New approach to q-Bernoulli polynomials with weight or weak weight, Adv. Stud. Contemp. Math. 24 (2014), no. 1, 39-44.

12.
J.-J. Seo, S.-H. Rim, S.-H. Lee, D. V. Dolgy, and T. Kim, q-Bernoulli numbers and polynomials related to p-adic invariant integral on $\mathbb{Z}_p$, Proc. Jangjeon Math. Soc. 16 (2013), no. 3, 321-326.