JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DISTRIBUTIONAL SOLUTIONS OF WILSON`S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS` PROBLEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DISTRIBUTIONAL SOLUTIONS OF WILSON`S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS` PROBLEM
Chung, Jaeyoung;
  PDF(new window)
 Abstract
We find the distributional solutions of the Wilson`s functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v
 Keywords
d`Alembert`s functional equation;distributions;exponential function;Gelfand generalized function;involution;Wilson`s functional equation;
 Language
English
 Cited by
1.
ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION, Bulletin of the Australian Mathematical Society, 2017, 95, 02, 260  crossref(new windwow)
 References
1.
J. Aczel, Lectures on Functional Equations and Their Applications, Dover Publications Inc., New York 2006.

2.
J. Aczel, J. K. Chung, and C. T. Ng, Symmetric second differences in product form on groups, Topics in mathematical analysis, 1-22, Ser. Pure Math., 11, World Sci. Publ., Teaneck, NJ, 1989.

3.
T. Angheluta, Asupra unei ecuatii functionale cu trei functii necunoscute, Lucr. Sti. Inst. Politehn. Astr. 5 (1960), 23-30.

4.
A. Bahyrycz and J. Brzdek, On solutions of the d'Alembert equation on a restricted domain, Aequationes Math. 85 (2013), no. 1-2, 169-183. crossref(new window)

5.
N. G. De Brujin, On almost additive functions, Colloq. Math. 15 (1966), 59-63.

6.
J. Chung, A distributional version of functional equations and their stabilities, Nonlinear Anal. 62 (2005), no. 6, 1037-1051. crossref(new window)

7.
J. Chung, Stability of exponential equations in Schwarz distributions, Nonlinear Anal. 69 (2008), no. 10, 3503-3511. crossref(new window)

8.
J. Chung and P. K. Sahoo, Solution of several functional equations on nonunital semigroups using Wilson's functional equations with involution, Abstr. Appl. Anal. 2014 (2014), Art. ID 463918, 9 pp.

9.
J. Chung and P. K. Sahoo, Stability of Wilson's functional equations with involutions, Aequationes Math. 89 (2015), no. 3, 749-763. crossref(new window)

10.
J. K. Chung, B. R. Ebanks, C. T. Ng, and P. K. Sahoo, On a quadratic-trigonometric functional equation and some applications, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1131-1161. crossref(new window)

11.
I. Corovei, The cosine functional equation for nilpotent groups, Aequationes Math. 15 (1977), no. 1, 99-106. crossref(new window)

12.
I. Corovei, The functional equation f(xy) + f($xy^{-1}$) = 2f(x)g(y) for nilpotent groups, Mathematica (Cluj) 22(45) (1980), no. 1, 33-41.

13.
I. Corovei, The d'Alembert functional equation on metabelian groups, Aequationes Math. 57 (1999), no. 2-3, 201-205. crossref(new window)

14.
I. Corovei, Wilson's functional equation on metabelian groups, Mathematica (Cluj) 44(67) (2002), no. 2, 137-146.

15.
P. De Place Friis, D'Alembert's and Wilson's equations on Lie groups, Aequationes Math. 67 (2004), no. 1-2, 12-25. crossref(new window)

16.
J. d'Alembert, Addition au Memoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin (1750), 355-360.

17.
J. d'Alembert, Memoire sur les principes de mecanique, Hist. Acad. Sci. Paris, pages 278-286, 1769.

18.
P. Erdos, Problem P310, Colloq. Math. 7 (1960), 311.

19.
I. Fenyo, Uber eine Losungsmethode gewisser Funktionalgleichungen, Acta Math. Acad. Sci. Hungar. 7 (1956), 383-396. crossref(new window)

20.
I. M. Gelfand and G. E. Shilov, Generalized Functions II, Academic Press, New York, 1968.

21.
I. M. Gelfand and G. E. Shilov, Generalized Functions IV, Academic, Press, New York, 1968.

22.
L. Hormander, The analysis of linear partial differential operator I, Springer-Verlag, Berlin-New York, 1983.

23.
W. B. Jurkat, On Cauchy's functional equation, Proc. Amer. Math. Soc. 16 (1965), 683-686.

24.
S. Kaczmarz, Sur l'equation fonctionnelle f(x)+f(x+y) = $\phi$(y)f(x+y/2), Fund. Math. 6 (1924), 122-129.

25.
P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011.

26.
L. Schwartz, Theorie des Distributions, Hermann, Paris, 1966.

27.
P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59 (2000), no. 3, 255-261. crossref(new window)

28.
H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), no. 1-2, 144-172. crossref(new window)

29.
G. van der Lyn, Sur l'equation fonctionnelle f(x + y) + f(x − y) = 2f(x)$\phi$(y), Mathematica (Cluj) 16 (1940), 91-96.

30.
D. V. Widder, The Heat Equation, Academic Press, New York, 1975.

31.
W. H. Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1920), no. 7, 300-312. crossref(new window)

32.
W. H. Wilson, Two general functional equations, Bull. Amer. Math. Soc. 31 (1925), no. 7, 330-333. crossref(new window)