JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MEROMORPHIC FUNCTIONS SHARING FOUR VALUES WITH THEIR DIFFERENCE OPERATORS OR SHIFTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MEROMORPHIC FUNCTIONS SHARING FOUR VALUES WITH THEIR DIFFERENCE OPERATORS OR SHIFTS
Li, Xiao-Min; Yi, Hong-Xun;
  PDF(new window)
 Abstract
We prove a uniqueness theorem of nonconstant meromorphic functions sharing three distinct values IM and a fourth value CM with their shifts, and prove a uniqueness theorem of nonconstant entire functions sharing two distinct small functions IM with their shifts, which respectively improve Corollary 3.3(a) and Corollary 2.2(a) from [12], where the meromorphic functions and the entire functions are of hyper order less than 1. An example is provided to show that the above results are the best possible. We also prove two uniqueness theorems of nonconstant meromorphic functions sharing four distinct values with their difference operators.
 Keywords
entire functions;meromorphic functions;shift sharing values;difference operators;uniqueness theorems;
 Language
English
 Cited by
1.
Uniqueness of entire functions sharing two values with their difference operators, Advances in Difference Equations, 2017, 2017, 1  crossref(new windwow)
 References
1.
W. W. Adams and E. G. Straus, Non-Archimedian analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418-424.

2.
J. M. Anderson and J.Clunie, Slowly growing meromorphic functions, Comment. Math. Helv. 40 (1966), 267-280.

3.
D. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A. 137 (2007), no. 3, 457-474. crossref(new window)

4.
W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133-147. crossref(new window)

5.
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+$\eta$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. crossref(new window)

6.
G. G. Gundersen, Meromorphic functions that share three values IM and a fourth value CM, Complex Variables Theory Appl. 20 (1992), no. 1-4, 99-106. crossref(new window)

7.
R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.

8.
R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. crossref(new window)

9.
R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. crossref(new window)

10.
W. K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75-84. crossref(new window)

11.
W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

12.
J. Heittokangas, R. Korhonen, I. Laine, and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 81-92. crossref(new window)

13.
J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. L. Zhang, Value sharing results for shifts of meromorphic function and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. crossref(new window)

14.
X. H. Hua and M. L. Fang, Meromorphic functions sharing four small functions, Indian J. Pure Appl. Math. 28 (1997), no. 6, 797-811.

15.
G. Jank and L. Volkmann, Einfuhrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhauser, Basel-Boston, 1985.

16.
I. Lahiri, Weighted sharing of three values and uniqueness of meromorphic functions, Kodai Math. J. 24 (2001), no. 3, 421-435. crossref(new window)

17.
I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/New York, 1993.

18.
I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 556-566.

19.
I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A 83 (2007), no. 8, 148-151. crossref(new window)

20.
A. Z. Mokhon'ko, On the Nevanlinna characteristics of some meromorphic functions, in: Theory of Functions, Functional Analysis and Their Applications vol. 14, 83-87, Izd-vo Khar'kovsk, Un-ta, Kharkov, 1971.

21.
J. M. Whittaker, Interpolatory Function Theory, Cambridge Tract No. 33, Cambridge University Press, 1964.

22.
C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

23.
H. X. Yi, Uniqueness theorems for meromorphic functions concerning small functions, Indian J. Pure Appl. Math. 32 (2001), no. 6, 903-914.

24.
J. L. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), no. 2, 401-408. crossref(new window)

25.
J. L. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. crossref(new window)