JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CERTAIN SEMISYMMETRY PROPERTIES OF (𝜅, 𝜇)-CONTACT METRIC MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CERTAIN SEMISYMMETRY PROPERTIES OF (𝜅, 𝜇)-CONTACT METRIC MANIFOLDS
De, Uday Chand; Jun, Jae-Bok; Samui, Srimayee;
  PDF(new window)
 Abstract
The object of the present paper is to characterize , )-contact metric manifolds whose concircular curvature tensor satisfies certain semisymmetry conditions. We also verify that the result holds by a concrete example.
 Keywords
(, )-contact metric manifolds;-contact metric manifolds;concircular curvature tensor;-Einstein manifolds;
 Language
English
 Cited by
 References
1.
K. Arslan, R. Ezentas, C. Murathan, and T. Sasahara, Biharmonic submanifolds in 3-dimensional ($\mathit{k},\mu$)-manifolds, Int. J. Math. Math. Sci. 2005 (2005), no. 22, 3575-3586. crossref(new window)

2.
D. E. Blair, J. S. Kim, and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883-892. crossref(new window)

3.
D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifold satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214. crossref(new window)

4.
U. C. De and A. Sarkar, On quasi-conformal curvature tensor of ($\mathit{k},\mu$)-contact metric manifold, Math. Rep. (Bucur.) 14(64) (2012), no. 2, 115-129.

5.
S. Ghosh and U. C. De, On $\phi$-quasiconformally symmetric ($\mathit{k},\mu$)-contact metric manifolds, Lobachevskii J. Math. 31 (2010), no. 4, 367-375. crossref(new window)

6.
S. Ghosh and U. C. De, On a class of ($\mathit{k},\mu$)-contact metric manifolds, An. Univ. Oradea Fasc. Mat. 19 (2012), no. 1, 231-242.

7.
J. B. Jun, A. Yildiz, and U. C. De, On $\phi$-recurrent ($\mathit{k},\mu$)-contact metric manifolds, Bull. Korean Math. Soc. 45 (2008), no. 4, 689-700. crossref(new window)

8.
W. Kuhnel, Conformal transformations between Einstein spaces, Conformal geometry (Bonn, 1985/1986), 105-146, Asepects math., E12, Vieweg, Braunschweig, 1988.

9.
C. Ozgur, Contact metric manifolds with cyclic-parallel Ricci tensor, Differ. Geom. Dyn. Syst. 4 (2002), no. 1, 21-25.

10.
B. J. Papantoniou, Contact Remannian manifolds satisfying $R(\xi,X){\cdot}R\;=\;0\;and\;\xi\;{\in}\;(\mathit{k},\mu)$-nullity distribution, Yokohama Math. J. 40 (1993), no. 2, 149-161.

11.
S. Tanno, Ricci curvatures of contact Reimannian manifolds, Tohoku Math. J. 40 (1988), no. 3, 441-448. crossref(new window)

12.
K. Yano, Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200. crossref(new window)

13.
A. Yildiz and U. C. De, A classification of ($\mathit{k},\mu$)-contact metric manifolds, Comm. Korean Math. Soc. 27 (2012), no. 2, 327-339. crossref(new window)