JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REEB FLOW SYMMETRY ON ALMOST COSYMPLECTIC THREE-MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REEB FLOW SYMMETRY ON ALMOST COSYMPLECTIC THREE-MANIFOLDS
Cho, Jong Taek;
  PDF(new window)
 Abstract
We prove that the Ricci operator S of an almost cosymplectic three-manifold M is invariant along the Reeb flow, that is, M satisfies ${\pounds}_{\xi}S
 Keywords
almost cosymplectic three-manifold;Reeb flow;Lie group;
 Language
English
 Cited by
1.
Semi-symmetric almost coKähler 3-manifolds, International Journal of Geometric Methods in Modern Physics, 2017, 1793-6977, 1850031  crossref(new windwow)
 References
1.
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.

2.
D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with $Q{\phi}\;=\;{\phi}Q$. II, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 379-383.

3.
J. T. Cho, Contact 3-manifolds with the Reeb flow symmetry, Tohoku Math. J. (2) 66 (2014), no. 4, 491-500. crossref(new window)

4.
J. T. Cho and J. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), no. 5, 913-932. crossref(new window)

5.
J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), suppl., 266-273. crossref(new window)

6.
R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc. Simon Stevin 44 (1992), no. 1, 1-34.

7.
S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. crossref(new window)

8.
T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841-846. crossref(new window)

9.
J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), no. 3, 293-329. crossref(new window)

10.
Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. crossref(new window)

11.
Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50. crossref(new window)

12.
Z. Olszak, Almost cosymplectic manifolds with Kahlerian leaves, Tensor N. S. 46 (1987), 117-124.

13.
Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. crossref(new window)

14.
D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl. 30 (2012), no. 1, 49-58. crossref(new window)