JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON CHARACTERIZATIONS OF SET-VALUED DYNAMICS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON CHARACTERIZATIONS OF SET-VALUED DYNAMICS
Chu, Hahng-Yun; Yoo, Seung Ki;
  PDF(new window)
 Abstract
In this paper, we generalize the stability for an n-dimensional cubic functional equation in Banach space to set-valued dynamics. Let be an integer. We define the n-dimensional cubic set-valued functional equation given by $$f(2{{\sum}_{i
 Keywords
Hyers-Ulam stability;n-dimensional cubic set-valued functional equation;
 Language
English
 Cited by
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.

2.
J. Brzdek, Stability of additivity and fixed point methods, Fixed Point Theory Appl. 2013 (2013), 285, 9 pp. crossref(new window)

3.
J. Brzdek, Note on stability of the Cauchy equation - an answer to a problem of Th. M. Rassias, Carpathian J. Math. 30 (2014), no. 1, 47-54.

4.
J. Brzdek and M. Piszczek, Selections of set-valued maps satisfying some inclusions and the Hyers-Ulam stability, Handbook of functional equations, 83-100, Springer Optim. Appl. 96, Springer, New York, 2014.

5.
C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lec. Notes in Math., 580, Springer, Berlin, 1977.

6.
H.-Y. Chu, A. Kim, and S. K. Yoo, On the stability of the generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14. crossref(new window)

7.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. crossref(new window)

8.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224. crossref(new window)

9.
K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 267-278.

10.
Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. 306 (2005), no. 2, 752-760. crossref(new window)

11.
S.-M. Jung and Z.-H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008 (2008), Article ID 732086, 11 pages.

12.
D. S. Kang and H.-Y. Chu, Stability problem of Hyers-Ulam-Rassias for generalized forms of cubic functional equation, Acta Math. Sin. (Eng;. Ser.) 24 (2008), no. 3, 491-502. crossref(new window)

13.
H. A. Kenary, H. Rezaei, Y. Gheisari, and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory Appl. 2012 (2012), 81, 17 pp. crossref(new window)

14.
G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional euqations, Appl. Math. Lett. 24 (2011), no. 8, 1312-1316. crossref(new window)

15.
B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.

16.
C. Park, D. O'Regan, and R. Saadati, Stabiltiy of some set-valued functional equations, Appl. Math. Lett. 24 (2011), 1910-1914. crossref(new window)

17.
M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability, Aequationes Math. 85 (2013), no. 1-2, 111-118. crossref(new window)

18.
M. Piszczek, On selections of set-valued inclusions in a single variable with applications to several variables, Results Math. 64 (2013), no. 1-2, 1-12. crossref(new window)

19.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. crossref(new window)

20.
Th.M. Rassias(Ed.), Handbook of Functional Equations, Springer Optim. Appl. 96, Springer, New York, 2014.

21.
H. Radstrom, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169. crossref(new window)

22.
S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.