JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Can the Point Defect Model Explain the Influence of Temperature and Anion Size on Pitting of Stainless Steels
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Corrosion Science and Technology
  • Volume 14, Issue 6,  2015, pp.253-260
  • Publisher : The Corrosion Science Society of Korea
  • DOI : 10.14773/cst.2015.14.6.253
 Title & Authors
Can the Point Defect Model Explain the Influence of Temperature and Anion Size on Pitting of Stainless Steels
Blackwood, Daniel J.;
  PDF(new window)
 Abstract
The pitting behaviours of 304L and 316L stainless steels were investigated at to in 1 M solutions of NaCl, NaBr and NaI by potentiodynamic polarization. The temperature dependences of the pitting potential varied according to the anion, being near linear in bromide but exponential in chloride. As a result, at low temperatures grades 304L and 316L steel are most susceptible to pitting by bromide ions, while at high temperatures both stainless steels were more susceptible to pitting by small chloride anions than the larger bromide and iodide. Thus, increasing temperature appears to favour attack by smaller anions. This paper will attempt to rationalise both of the above findings in terms of the point defect model. Initial findings are that qualitatively this approach can be reasonably successful, but not at the quantitative level, possibly due to insufficient data on the mechanical properties of thin passive films.
 Keywords
stainless steel;pitting corrosion;anion size;
 Language
English
 Cited by
 References
1.
D. J. Blackwood, and S. E. Chua, Proceedings of the 17th International Corrosion Congress on Comparison on influence of molybdenum on the pitting of stainless steels in chloride and bromide solutions, p. 72, Perth, Australia (2011).

2.
A. I. Munoz, J. G. Anton, J. L. Guinon and V. P. Herranz, Corros. Sci., 48, 3349 (2006). crossref(new window)

3.
J. E. Truman, Stainless steels, Corrosion 3rd ed., (eds. L. L. Shrier, R. A. Jarman and G. T. Burstein), Vol. 1, Chapter 3, p. 34, Butterworth-Heinemann, Oxford (1994).

4.
G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998). crossref(new window)

5.
J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976). crossref(new window)

6.
P. C. Pistorius and G. T. Burstein, Phil. Trans. R. Soc. A, 341, 531 (1992). crossref(new window)

7.
D. D. Macdonald, Proceedings of the Electrochemical Society on Pits and pores II : Formation, properties, and significance for Advanced Materials, 2000-25, 141, Phoenix, Arizona (2000).

8.
D. D. Macdonald, Corros. Eng. Sci. Techn., 49, 143 (2014). crossref(new window)

9.
ASTM G-61-86: Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys, ASTM International, West Conshohocken, PA, USA Re-approved (2009).

10.
R. T. DeHoff, Thermodynamics in materials science, p. 409, McGraw Hill Inc., Singapore (1993).

11.
R. Schmid, A. M. Miah, and V. N. Sapunov, Phys. Chem. Chem. Phys., 2, 97 (2000). crossref(new window)

12.
B. E. Conway and E. Aryranci, J. Solution Chem., 28, 163 (1999). crossref(new window)

13.
J. L. Trompette, Corros. Sci., 82, 108 (2014). crossref(new window)

14.
C. G. Malmberg and A. A. Maryott, J. Res. Nat. Bur. Stand., 56, 2641 (1956).

15.
K. V. Rao, A. Smakula, J. Appl. Phys., 36, 2031 (1965). crossref(new window)

16.
K. Taneichi, T. Narushima, Y. Iguchi and C. Ouchi, Mater. Trans., 47, 2540 (2006). crossref(new window)

17.
P. H. Fang and W. S. Brower, Phys. Rev., 129, 1561 (1963). crossref(new window)

18.
H. H. Girault, Charge transfer across liquid-liquid interfaces, Modern Aspects of Electrochemistry, 25, p. 1, Plenum Press, New York (1993). crossref(new window)

19.
C. E. Weir, J. Res. Nat. Bur. Stand., 69A, 29 (1965). crossref(new window)