JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Corrosion Science and Technology
  • Volume 14, Issue 6,  2015, pp.261-266
  • Publisher : The Corrosion Science Society of Korea
  • DOI : 10.14773/cst.2015.14.6.261
 Title & Authors
The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique
Xu, H.S.; Sun, D.B.; Yu, H.Y.; Meng, H.M.;
  PDF(new window)
 Abstract
The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution () and film formation () components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 to 0.8 resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}
 Keywords
repassivation;abrading electrode;anodic dissolution;passive film;high-field model;
 Language
English
 Cited by
 References
1.
A. Kocijan, C. Donik, M. Jenko. Corros. Sci., 49, 2083 (2007). crossref(new window)

2.
S. E. Ziemniak, M. Hanson, Corros. Sci., 44, 2209 (2002). crossref(new window)

3.
D. Shintani, T. Ishida, H. Izumi, et al., Corros. Sci., 50, 2840 (2008). crossref(new window)

4.
H. H. Ge, X. M. Xu, L. Zhao, et al., J. Appl. Electrochem., 41, 519 (2011). crossref(new window)

5.
P. Engseth, J. C. Scully, Corros. Sci., 15, 505 (1975). crossref(new window)

6.
Jae-Bong Lee, Mater. Chem. Phys., 99, 224 (2006). crossref(new window)

7.
P. Engseth, J. C. Scully, Corros. Sci., 15, 505 (1975). crossref(new window)

8.
F. M. Song, K. S. Raja, D. A. Jones, Corros. Sci., 48, 285 (2006). crossref(new window)

9.
Norio Sato, Morris Cohen, J. Electrochem. Soc., 111, 512 (1964). crossref(new window)

10.
Eun-Ae Cho, Chin-Kwan Kim, Joon-Shick Kim, Hyuk-Sang Kwon, Electrochim. Acta, 45, 1933 (2000). crossref(new window)

11.
N. Cabrera, N. F. Mott, Rep. Prog. Phys., 12, 163 (1948).

12.
G. T. Burstein, P. I. Marshall, Corros. Sci., 23, 125 (1983). crossref(new window)

13.
H. S. Kwon, E. A. Cho, and K. A. Yeom, Corrosion, 56, 32 (2000). crossref(new window)

14.
R. S. Lillard, G. Vasquez Jr., D. F. Bahr, J. Electrochem. Soc., 158, C194 (2011). crossref(new window)

15.
R. M. Fernandez-Domene, E. Blasco-Tamarit, D. M. Garcia-Garcia, J. Garcia-Anton, Electrochim. Acta, 58, 264 (2011). crossref(new window)

16.
Lindsey R. Goodman, Preet M. Singh, Corros. Sci., 65, 238 (2012). crossref(new window)

17.
M. Gojic, D. Marijan, L. Kosec, Corrosion, 56,839 (2000). crossref(new window)

18.
G. T. Burstein, A. J. Davenport, J. Electrochem. Soc., 136, 936 (1989). crossref(new window)

19.
M. Avrami, J. Chem. Phys., 7, 1103 (1939). crossref(new window)

20.
Z. Feng, X. Cheng, C. Dong, et al., Corros. Sci., 52, 3646 (2010). crossref(new window)

21.
L. J. Oblonsky, M. P. Ryan, and H. S. Isaacs, J. Electrochem. Soc., 145, 1922 (1998). crossref(new window)

22.
J. Doff, P. E. Archibong, G. Jones, Electrochim. Acta, 56, 3225 (2011). crossref(new window)

23.
H. P. Leckie and H. H. Uhlig, J. Electrochem Soc., 113, 1262 (1966). crossref(new window)