JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Microbiologically Induced Corrosion of Three Tubular Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Corrosion Science and Technology
  • Volume 14, Issue 6,  2015, pp.267-272
  • Publisher : The Corrosion Science Society of Korea
  • DOI : 10.14773/cst.2015.14.6.267
 Title & Authors
Microbiologically Induced Corrosion of Three Tubular Materials
Mukadam, S.; Al-Hashem, A.;
  PDF(new window)
 Abstract
The performance of three tubular materials (C-90, L-80, and N-80) was evaluated in a synthetic brine inoculated with sulfate-reducing bacteria (SRB) in the absence and presence of biocides. A flow loop was used in the evaluation of the three alloys. Morphological examination of the alloy surfaces after exposure to SRB and after biocide treatment was performed by scanning electron microscopy (SEM) to determine the nature of any localized corrosion. The SE images of the coupon samples showed a marked difference between the biocide-treated and untreated samples. Small pits were observed on the ultrasonically cleaned surfaces of the three alloys after exposure to SRB. The biocide treatment reduced the number of SRB on the surfaces of the alloys. Results indicated that C-90 and L-80 alloys exhibited better MIC resistance than N-80 under the conditions used in this study.
 Keywords
Flow loop;sulfate-reducing bacteria;pitting attack;biocide;
 Language
English
 Cited by
 References
1.
J. M. Galbraith, K.L. Lofgren, Mater. Performance, 26, 42 (1987).

2.
R. A. Agostini, R. D. Young, Mater. Performance, 30, 75 (1991).

3.
W. Eden, P. J. Laycock, M. Fielder, Oil reservoir souring, p. 87, HSE Books, UK, http://www.hse.gov.uk/research/othpdf/200-399/oth385.pdf (1993).

4.
O. H. Pucci, Int. Biodeter. Biodegr., 37, 116 (1996).

5.
Z. I. Khatib, J. R. Salanitro, proceedings of the SPE Annual Technical Conference and Exhibition, p. 2, Society of Petroleum Engineers, San Antonio, Texas (1997).

6.
S. A. Lagoven, Practical Manual of Biocorrosion and Biofouling for the Industry, p. 151, CYTED Research Network, La Plata, Argentina (1998).

7.
L. C. Jordan, J. M. Walsh, Proceedings of the Corrosion 2004, p. 11, NACE, New Orleans (2004).

8.
G. E. Jenneman, P. D. Moffitt, G. A. Bala, R. H. Webb, Society of Petroleum Engineers, 14, 219 (1999).

9.
J. Larsen, M. H. Rod, S. Zwolle, Proceedings of the Corrosion 2004, p. 18, NACE, New Orleans (2004).

10.
R. D. Bryant, W. Jansen, J. Boivin, E. J. Laishley, and J. W. Costerton, Appl. Environ. Microb., 57, 2804 (1991).

11.
J. A. Straatmann, and J. Grobner, Met. Sci. Heat. Treat., 19, 610 (1977). crossref(new window)

12.
A. V. Sobral-Santiago, D. Da C. Magalhaes, H. F. G. de Abreu, H. B. de Sant Ana, and V. M. M. Melo, Acta Micoscopica, 12, 209 (2003).

13.
F. P. de Franca, and M. T. S. Lutterbach, J. Ind. Microbiol., 17, 6 (1996). crossref(new window)

14.
C. O. Obuekwe, D. W. S. Westlake, F. D. Cook, and J. W. Costerton, Appl. Environ. Microb., 41, 766 (1981).

15.
J. M. Romero, C. Angeles-Chavez, and M. Amaya, Corros. Eng. Sci. Techn., 39, 261 (2004). crossref(new window)