JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Corrosion Science and Technology
  • Volume 14, Issue 6,  2015, pp.273-279
  • Publisher : The Corrosion Science Society of Korea
  • DOI : 10.14773/cst.2015.14.6.273
 Title & Authors
Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution
Zhao, Jie; Cheng, Cong Qian; Cao, Tie Shan;
  PDF(new window)
 Abstract
Effects of passive film quality by chemical passivation and solution flow on the corrosion behavior of 304 stainless steel in HCl solution were investigated using a coloration indicator, and by corrosion weight loss, electrochemical polarization and element dissolution measurements. A high redness degree suggests a low passive-film integrity for 304 stainless steel following air exposure, while the minimum redness degree for the samples after chemical passivation suggests a high passive-film integrity. In the static condition, samples subjected to air exposure exhibited a high corrosion rate and preferential dissolution of Fe. Chemical passivation inhibited the corrosion rate due to the intrinsically high structural integrity of the passive film and high concentrations of Cr-rich oxides and hydroxide. Solution flow accelerated corrosion by promoting both the anodic dissolution reaction and the cathodic reaction. Solution flow also altered the preferential dissolution to fast uniform dissolution of metal elements.
 Keywords
stainless steel;chemical passivation treatment;flow;corrosion;metal element dissolution;
 Language
English
 Cited by
 References
1.
S. Aribo, R. Barker, X. Hu, Wear, 302, 1602 (2013). crossref(new window)

2.
R. J. K. Wood, J. C. Walker, T. J. Harvey, S. Wang, S. S.Rajahram, Wear, 306, 254 (2013). crossref(new window)

3.
Y. Wang, Y. G. Zheng, W. Kea, W. H. Sun, W. L. Hou, X. C. Chang, J. Q. Wang Corros. Sci., 53, 3177 (2011). crossref(new window)

4.
B. T. Lu, L. C. Mao, J. L. Luo, Electrochim. Acta, 56, 85 (2010). crossref(new window)

5.
J. A. Wharton, R. J. K. Wood, Wear, 252, 525 (2006).

6.
G. Herting, I. Odnevall Wallinder, C. Leygraf, J. Food Eng., 87, 291 (2008). crossref(new window)

7.
P. Agarwal, Srivastava, M. M. Srivasta, S. Prakash, M. Ramanamurthy, R. Shrivast, S. Dass, Sci. Total Environ., 199, 271 (1997). crossref(new window)

8.
N. Soltani, N. Tavakkoli, M. Khayatkashani, M. R. Jalali, A. Mosavizade, Corros. Sci., 62, 122 (2012). crossref(new window)

9.
A. S. Fouda, G. Y. El-Ewady, S. Fathy, Desal. Wat. Treat., 51, 2202 (2013). crossref(new window)

10.
M. Behpour, S. M. Ghoreishi, N. Soltani, Corros. Sci., 51, 1073 (2009). crossref(new window)

11.
C. Q. Cheng, J. Zhao, T. S. Cao, M. K. Lei, D. W. Deng, Corros. Sci., 70, 235 (2013). crossref(new window)

12.
T. S. Lee, I. M. Kolthoff, D. L. Leussing, J. Am. Chem. Soc., 70, 2348 (1948). crossref(new window)