Advanced SearchSearch Tips
Corrosion Characteristics of Ni-Cr and Co-Cr Alloy Used as a Dental Prosthesis and Its Adhesion to Porcelain
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Corrosion Science and Technology
  • Volume 15, Issue 3,  2016, pp.141-146
  • Publisher : The Corrosion Science Society of Korea
  • DOI : 10.14773/cst.2016.15.3.141
 Title & Authors
Corrosion Characteristics of Ni-Cr and Co-Cr Alloy Used as a Dental Prosthesis and Its Adhesion to Porcelain
Kim, Kijung; Choi, Byungki; Oh, Doorok; Choi, Byung-Sang;
  PDF(new window)
By using Ni-Cr and Co-Cr alloys, porcelain fused to metal (PFM) samples were prepared to examine the interface and the surface corrosion behavior. The potentiodynamic polarization analysis showed that the corrosion current density of Co-Cr alloy () was three times lower than that of Ni-Cr alloy () at room temperature. A dental prosthesis consisting of the porcelain fused to Ni-Cr alloy extracted from a patient after approximately four years of usage was examined to assess its resistance to corrosion. OM and SEM images of the metal part revealed a typical pitting corrosion. As compared to porcelain fused to Ni-Cr alloy having a thick layer () of oxide at the interface, a relatively thin oxide layer (less than ) was formed on Co-Cr alloy, indicating that the interface between Co-Cr alloy and porcelain may have a better adhesion strength than the interface between Ni-Cr alloy and porcelain.
dental prosthesis;porcelain fused to metal (PFM);pitting corrosion;Ni-Cr;Co-Cr;
 Cited by
S. S. Azer, G. M. Ayash, W. M. Johnston, M. F. Khalil and S. F. Rosenstiel, J. Prosthet Dent., 96, 379 (2006). crossref(new window)

J. Pisani-Proenca, M. C. Erhardt, L. F. Valandro, G. Guitierrrez-Aceves, M. V. Bolanos-Carmona, R. Del Castillo-Salmeron, and M. A. Bottino, J. Prosthet Dent., 94, 412 (2006).

J-S. Ahn, E-K. Ko, and K-J. Joo, J. Kor. Acad. of Dent. Tech., 33, 18792 (2011).

K-J. Kim, Ph. D. Thesis, Catholic University of Pusan (2013).

R. M. Joias, R. N. Tango, J. E. J. de Araujo, M. A. J. de Araujo, G. S. F. A. Saavedra, T. J. A. Paes-Junior, and E. T. Kimpara, J. Prosthet. Dent., 99, 55 (2008)

J. W. J. Silva, L. L. Sousa, R. Z. Nakazato, E. N. Codaro, and H. de Felipe, Mater. Sci. and Appl., 2, 42 (2011).

M. Kuschner, Environ Health Perspect, 40, 101 (1981). crossref(new window)

D. L. Tsalve and Z. K. Zaprianov, Environ Health Perspect., 96 (1983).

R. M. De Melo, A. C. Travassos, and M. P. Neisser, J. Prosthet Dent., 93, 64 (2005). crossref(new window)

J. C. Wataha, J. Prosthet. Dent., 83, 223 (2000). crossref(new window)

J. C. Wataha, N. L. O’Dell, B. B. Singh, M. Ghazi, G. M. Whitford, and P. E. Lockwood, J. Biomed. Mater. Res., 58, 537 (2001). crossref(new window)

K. Turan, Materials and Design, 30, 445 (2009). crossref(new window)

M. Yamamoto, Metal-Ceramics Principle and methods of Makoto-Yamamoto, Quintessence Publishing Co, 110, 483 (1985).

T. Papadopoulos, A. Tsetsekou, and G. Eliades, Eur. J. Prosthodont Restor. Dent., 7, 15 (1999).

W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, 2 edition, McGraw-Hill (1993).

S-H. Jung, Ms. Thesis, Gyeongsang National University (2014).

Ja. M. Kolotyrkin, Corrosion, 19, 261 (1963). crossref(new window)

J. Horvath and H. H. Uhlig, J. Electrochem. Soc., 115, 791 (1968). crossref(new window)

C. M. Wylie, R. M. Shelton, G. J. Fleming and A. Davenport, Dent. Mater., 23, 714 (2007). crossref(new window)

S-H. Jeon, H-J. Kim, K-H. Kong, and Y-S. Park, Corros. Sci. Tech., 13, 48 (2014). crossref(new window)

J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976). crossref(new window)

A case study reported by Metallurgical Technologies, Inc., P.A., Analysis of Cracked Impeller Blade, NC, USA,

A. Eliasson, C. F. Arnelund, and A. Johansson, J. Prosthet Dent., 98, 6 (2007). crossref(new window)

H-J. Kim, Ms. Thesis, Catholic University of Pusan (2010).