JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Implementation of low power algorithm for near distance wireless communication and RFID/USN systems
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Implementation of low power algorithm for near distance wireless communication and RFID/USN systems
Kim, Song-Ju; Hwang, Moon-Soo; Kim, Young-Min;
  PDF(new window)
 Abstract
A new power control algorithm for wireless communication which can be applied to various near distance communications and USN/RFID systems is proposed. This technique has been applied and tested to lithium coin battery operated UHF/microwave transceiver systems to show extremely long communication life time without battery exchange. The power control algorithm is based on the dynamic prediction method of arrival time for incoming packet at the receiver. We obtain 16mA current consumption in the TX module and 20mA current consumption in the RX module. The advantage provided by this method compared to others is that both master transceiver and slave transceiver can be low power consumption system.
 Keywords
low power algorithm;synchronization;dynamic prediction method;
 Language
English
 Cited by
1.
High performance metal-only fan-beam reflectarray with a delta source applicable for an electromagnetic fence,;

International Journal of Contents, 2011. vol.7. 4, pp.44-49 crossref(new window)
2.
Efficient electromagnetic boundary conditions to accelerate optimization of RF devices,;

International Journal of Contents, 2011. vol.7. 4, pp.50-55 crossref(new window)
1.
Efficient electromagnetic boundary conditions to accelerate optimization of RF devices, International Journal of Contents, 2011, 7, 4, 50  crossref(new windwow)
 References
1.
Harte. S, O'Flynn. B, Martinez-Catrala. R. V, Popovici. E. M, “Design and implementation of a miniaturised, low power wireless sensor node” in Proc. 18th European Conf. Circuit Theory and Design, 2007, pp. 894–897. crossref(new window)

2.
J. Hill and D. Culler, “Mica: a wireless platform for deeply embedded networks” IEEE Micro, vol. 22, no. 6, Nov-Dec 2002, pp. 12–24. crossref(new window)

3.
J. Polastre, R.Szewczyk, and D. Culler, “Telos: enabling ultra-low power wireless research” in Proc. 4th Int. Symp. Information Processing in Sensor Networks, 2005, pp. 370-375.

4.
C. Park and P.H. Chou, “Eco: An ultra-compact low power wireless sensor node for real-time motion monitoring” in Proc. Int. Workshop on Wearable and Implantable Body Sensor Networks, 2006, pp. 162-165.

5.
J. Barton et al., “A miniaturised modular platform for wireless sensor networks” in Proc. European Conf. on Circuit Theory and Design, 2005, vol. 3, pp. 35-38. crossref(new window)

6.
T Torfs, S. Sanders, C. Winters, S. Brebels, and C. Van Hoof, “Wireless network of autonomous environmental sensors” in Proc. IEEE Sensors, 2004, pp. 923-926. crossref(new window)

7.
M. Ouwerkerk, F. Pasveer, and N. Engin, “SAND: a modular application development platform for miniature wireless sensors” in Proc. Int. Workshop on Wearable and Implantable Body Sensor Networks, 2006, pp. 166-170. crossref(new window)

8.
Murali. D, Ida. N, “A sampling method for reduction of power in battery operated receivers” in 11th Int. Conf. on Optimization of Electrical and Electronic Equipment, 2008, pp. 47–50. crossref(new window)

9.
X. Shi, G. Stromberg, Y. Gsottberger, and T. Sturm, “Wake-Up-Frame Scheme for Ultra Low Power Wireless Transceivers” in Proc. GLOBECOM, 2004, pp. 3619-3623. crossref(new window)

10.
A. El-Hoiydi, “Aloha with preamble sampling for sporadic traffic in ad hoc wireless sensor networks” in ICC. CSEM SA, 2002, pp.3418-3423. crossref(new window)

11.
A. El-Hoiydi, J.-D.Decotignie, C. Enz, and E. Roux, “Poster abstract: Wisemac, an ultra low power mac protocol for the wisenet wireless sensor network” in SenSys. CSEM SA, 2003, pp.302-303.

12.
A. El-Hoiydi, J.-D.Decotignie, C. Enz, and E. Roux, “Poster abstract: Wisemac, an ultra low power mac protocol for the wisenet wireless sensor network” in SenSys. CSEM SA, 2003, pp.302-303. crossref(new window)

13.
A. El-Hoiydi and J.-D.Decotignie, “Wisemac: An ultra low power mac protocol for the downlink of infrastructure wireless sensor networks” in ISCC. CSEM SA, 2004, pp.244-251. crossref(new window)

14.
T. F. Fuller, M. Doyle, J. Newman, “Simulation and Optimization of the Dual Lithium Ion Insertion Cell” Journal of Electrochem. Soc., vol. 141, no. 4, Apr. 1994,pp. 1-10. crossref(new window)

15.
C. F. Chiasserini and R. R. Rao, “Pulsed battery discharge in communication devices” in Proc. Mobicom 99, Seattle, 1999, pp.88-95. crossref(new window)

16.
T. Simunic, L. Benini, G. De Micheli, “Energy-Efficient Design of Battery-Powered Embedded Systems” in Proc. Int. Symposium on Low Power Electronics and Design, 1999, pp 212-217. crossref(new window)

17.
Sung Park, Savvides. A., Srivastava. M. B., “Battery capacity measurement and analysis using lithium coin cell battery” in Proc. Int. Symposium on Low Power Electronics and Design, 2001, pp 382-387. crossref(new window)

18.
Panasonic Lithium Coin Data Sheet: http://industrial.panasonic.com/wwwcgi/jvcr13pz.cgi?E+BA+3+AAA4003+CR2450+7+WW

19.
C. S. Park, Chou. P. H, Ying Bai, Matthews. R, Hibbs. A, “An ultra-wearable, wireless, low power ECG monitoring system” in BioCAS, 2006, pp 241-244. crossref(new window)

20.
Y. S. Choi, N. H. Chang, T. H. Kim, “DC-DC converteraware power management for battery-operated embedded systems” in 42nd Proc. Conf. on Design Automation, 2005, pp.895-900. crossref(new window)