Advanced SearchSearch Tips
Associations of T→A Mutation in the Promoter Region of Myostatin Gene with Birth Weight in Yorkshire Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Associations of T→A Mutation in the Promoter Region of Myostatin Gene with Birth Weight in Yorkshire Pigs
Jiang, Y-L; Li, N; Fan, X-Z; Xiao, L-R; Xiang, R-L; Hu, X-X; Du, L-X; Wu, C-X;
  PDF(new window)
A TA mutation in the promoter region of porcine myostatin (MSTN) gene has been identified in our previous work. This study analyzed the associations of the myostatin genotypes (TT, TA) caused by this mutation with birth weigh in Yorkshire pigs. Data from 211 unrelated individuals were collected three times from one breeding farm. Detections of the mutation were carried out by PCR-RFLPs approach. The effects of MSTN genotypes (TT and TA) on birth weight were compared by least square means. The results showed that for birth weight of Yorkshire pigs, individuals with TA genotype were significantly higher than those with TT genotype (p<0.05), and the birth weight for pigs with TA genotype were 1.37 kg in average but only 1.25 kg for pigs with TT genotype, indicating a positive effect of birth weight for A allele.
Pig;Myostatin Gene;Mutation;Birth Weight;
 Cited by
Cloning and Prokaryotic Expression of the Mature Fragment of the Chinese Yellow Bovine Myostatin Gene,;;;;

아세아태평양축산학회지, 2007. vol.20. 6, pp.827-831 crossref(new window)
A New Single Nucleotide Polymorphism in the IGF-I Gene and Its Association with Growth Traits in the Nanjiang Huang Goat,;;;;;;

아세아태평양축산학회지, 2008. vol.21. 8, pp.1073-1079 crossref(new window)
Association of SNP Haplotypes at the Myostatin Gene with Muscular Hypertrophy in Sheep,;;;;;;;;;;;;;;

아세아태평양축산학회지, 2008. vol.21. 7, pp.928-935 crossref(new window)
Polymorphisms in the 5′ regulatory region of myostatin gene are associated with early growth traits in Yorkshire pigs, Science in China Series C: Life Sciences, 2007, 50, 5, 642  crossref(new windwow)
effects on livestock muscle development and body composition, Australian Journal of Experimental Agriculture, 2008, 48, 7, 921  crossref(new windwow)
Identification and genetic effect of haplotypes in the promoter region of porcine myostatin gene, Animal Genetics, 2011, 42, 1, 6  crossref(new windwow)
) Gene in Indian Goat Breeds, Animal Biotechnology, 2014, 25, 1, 55  crossref(new windwow)
Association of Apolipoprotein B and Adiponectin Receptor 1 Genes with Carcass, Bone Integrity and Performance Traits in a Paternal Broiler Line, PLOS ONE, 2015, 10, 8, e0136824  crossref(new windwow)
Epigenetics and developmental programming of welfare and production traits in farm animals, Reproduction, Fertility and Development, 2016, 28, 10, 1443  crossref(new windwow)
Cappuccio, L., C. Marchitelli and A. Serracchioli. 1998. A G-T transversion induces a stop codon at the mh locus in hypertrophic Marchigiana beef subjects. Anim. Genet. 29(1): 51.

Casas, E., J. W. Keele and S. C. Fahrenkrug. 1999. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 77(7):1686-1692.

Dwyer, C. M., N. C. Stickland and J. M. Fletcher. 1994.The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth. J. Anim. Sci. 72(4):911-917.

Grobet, L., L. J. Martin , D. Poncelet , D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset and M. Georges. 1997. A deletion in the bovine myostatin gene causes the doublemuscled phenotype in cattle. Nat Genet. 17(1):71-74. crossref(new window)

Ji, S., R. L. Losinski, S. G. Cornelius, G. R. Frank, G. M. Willis, D. E. Gerrard, F. F. Depreux and M. E. Spurlock. 1998 Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am. J. Physiol. 1998 .275(4 Pt 2):R1265-1273.

Jiang, Y. L., L. X. Du, L. Zhang, Y. F. Zhang, C. G. Jiang and L. R. Xiao. 1997. Detection of the $Hal^n$ gene in pigs of imported breeds in Shandong province. Proceedings in Animal Breeding and Genetics in China, 1997, pp. 94-97.

Jiang, Y. L., N. Li, C. X. Wu and L. X. Du. 2001. Analysis on single nucleotide polymorphisms of porcine myostatin gene in different breeds. Acta Genetica Sinica. 28(9):840-845.

Kambadur, R., M. Sharma, T. P. Smith and J. J. Bass. 1997.Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7(9):910-916.

Malek, M., J. C. Dekkers, H. K. Lee, T. J. Baas and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm Genome. 12(8):630-636. crossref(new window)

McPherron, A. C., A. M. Lawier and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-superfamily member. Nature. 387:83-90. crossref(new window)

McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 94(23):12457-12461. crossref(new window)

Roehe, R. 1999. Genetic determination of individual birth weight and its association with sow productivity traits using Bayesian analyses. J. Anim. Sci. 77(2):330-343.

Sarker, N., R. J. Hawken, S. Takahashi, L. J. Alexander, T. Awata, L. B. Schook and H. Yasue. 2001. Directed isolation and mapping of microsatellites from swine Chromosome 1q telomeric region through microdissection and RH mapping. Mamm Genome. 12(7):524-527. crossref(new window)

SAS Institute Inc. 1998. SAS/STAT User's guide, Release 6.03 edn. SAS Institute Inc. Cary, NC, USA.

te Pas, M. F., A. Soumillion, F. L. Harders, F. J. V erburg, T. J. van den Bosch, P. Galesloot and T. H. Meuwissen. 1999a. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci .77(9):2352-2356.

te Pas, M. F., F. L. Harders, A. Soumillion , L. Born, W. Buist and T. H. Meuwissen. 1999b. Genetic variation at the porcine MYF-5 gene locus. Lack Of association with meat production traits. Mamm Genome. 10(2):123-127. crossref(new window)

Wada, Y, T. Akita, T. Awata, T. Furukawa, N. Sugai, Y. Inage, K. Ishii, Y. Ito, E. Kobayashi, H. Kusumoto, T. Matsumoto, S. Mikawa, M. Miyake, A. Murase, S. Shimanuki, T. Sugiyama, Y. Uchida, S. Yanai and H. Yasue. 2000. Quantitative trait loci (QTL) analysis in a Meishan${\times}$Gottingen cross population. Anim. Genet. 31(6):376-384. crossref(new window)

Walling, G. A., P. M. Visscher, L. Andersson, M. F. Rothschild, L. Wang, G. Moser, M. A. Groenen, J. P. Bidanel, S. Cepica, A. L. Archibald, H. Geldermann, D. J. de Koning, D. Milan, C. S. Haley. 2000. Combined analyses of data from quantitative trait loci mapping studies. Chromosome 4 effects on porcine growth and fatness. Genetics. 155(3):1369-1378.

Wang, W. J., K. F. Chen, J. Ren, N. S. Ding, W. H. Lin, J. Gao, H. S. Ai and L. S. Huang. 2002. Relationship of growth hormone (GH 2) genotypes with some production performances in pig. Acta Genetica Sinica. 29(2):111-114.

Yu, T. P., C. K. Tuggle, C. B. Schmitz, M. F. Rothschild. 1995. Association of PIT1 polymorphisms with growth and carcass traits in pigs. J. Anim. Sci. 73(5):1282-1288.