Advanced SearchSearch Tips
Rumen Microbes, Enzymes and Feed Digestion-A Review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Rumen Microbes, Enzymes and Feed Digestion-A Review
Wang, Y.; McAllister, T.A.;
  PDF(new window)
Ruminant animals develop a diverse and sophisticated microbial ecosystem for digesting fibrous feedstuffs. Plant cell walls are complex and their structures are not fully understood, but it is generally believed that the chemical properties of some plant cell wall compounds and the cross-linked three-dimensional matrix of polysaccharides, lignin and phenolic compounds limit digestion of cell wall polysaccharides by ruminal microbes. Three adaptive strategies have been identified in the ruminal ecosystem for degrading plant cell walls: production of the full slate of enzymes required to cleave the numerous bonds within cell walls; attachment and colonization of feed particles; and synergetic interactions among ruminal species. Nonetheless, digestion of fibrous feeds remains incomplete, and numerous research attempts have been made to increase this extent of digestion. Exogenous fibrolytic enzymes (EFE) have been used successfully in monogastric animal production for some time. The possibility of adapting EFE as feed additives for ruminants is under intensive study. To date, animal responses to EFE supplements have varied greatly due to differences in enzyme source, application method, and types of diets and livestock. Currently available information suggests delivery of EFE by applying them to feed offers the best chance to increase ruminal digestion. The general tendency of EFE to increase rate, but not extent, of fibre digestion indicates that the products currently on the market for ruminants may not be introducing novel enzyme activities into the rumen. Recent research suggests that cleavage of esterified linkages (e.g., acetylesterase, ferulic acid esterase) within the plant cell wall matrix may be the key to increasing the extent of cell wall digestion in the rumen. Thus, a crucial ingredient in an effective enzyme additive for ruminants may be an as yet undetermined esterase that may not be included, quantified or listed in the majority of available enzyme preparations. Identifying these pivotal enzyme(s) and using biotechnology to enhance their production is necessary for long term improvements in feed digestion using EFE. Pretreating fibrous feeds with alkali in addition to EFE also shows promise for improving the efficacy of enzyme supplements.
Exogenous Fibrolytic Enzymes;Ruminant;Feed Digestion;Alkali;
 Cited by
Limits of Exogenous Fibrolytic Enzymes to Improve Digestion and Intake of a Tropical Grass,;;;;;

아세아태평양축산학회지, 2007. vol.20. 6, pp.914-919 crossref(new window)
Effect of Glucose Levels and N Sources in Defined Media on Fibrolytic Activity Profiles of Neocallimastix sp. YQ1 Grown on Chinese Wildrye Grass Hay or Alfalfa Hay,;;

아세아태평양축산학회지, 2011. vol.24. 3, pp.379-385 crossref(new window)
Effects of Aspergillus Oryzae Culture and 2-Hydroxy-4-(Methylthio)-Butanoic Acid on In vitro Rumen Fermentation and Microbial Populations between Different Roughage Sources,;;;;;

아세아태평양축산학회지, 2014. vol.27. 9, pp.1285-1292 crossref(new window)
Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (Bubalus bubalis) calves, Tropical Animal Health and Production, 2010, 42, 6, 1263  crossref(new windwow)
Effect of non-starch-polysaccharide-degrading enzymes as feed additive on the rumen bacterial population in non-lactating cows quantified by real-time PCR, Journal of Animal Physiology and Animal Nutrition, 2012, 97, 6, 1104  crossref(new windwow)
Effects of Aspergillus Oryzae Culture and 2-Hydroxy-4-(Methylthio)-Butanoic Acid on In vitro Rumen Fermentation and Microbial Populations between Different Roughage Sources, Asian-Australasian Journal of Animal Sciences, 2014, 27, 9, 1285  crossref(new windwow)
Effect of temperature and pre-incubation time of fibrolytic enzymes on in vitro degradability of Brachiaria (Brachiaria decumbens), Animal Production Science, 2014, 54, 10, 1779  crossref(new windwow)
Effects of feeding different levels of corn steep liquor on the performance of fattening lambs, Journal of Animal Physiology and Animal Nutrition, 2015, 100, 1, 109  crossref(new windwow)
Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation, Journal of Dairy Science, 2016, 99, 5, 3486  crossref(new windwow)
Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle, Veterinary World, 2017, 10, 12, 1515  crossref(new windwow)
Impact of Chestnut and Quebracho Tannins on Rumen Microbiota of Bovines, BioMed Research International, 2017, 2017, 2314-6141, 1  crossref(new windwow)
Associations of rumen parameters with feed efficiency and sampling routine in beef cattle, animal, 2017, 1751-732X, 1  crossref(new windwow)
Akin, D. E. 1989. Histological and physical factors affecting digestibility of forages. Agron. J. 81:17-25. crossref(new window)

Ali, B. R. S., L. Zhou, F. M. Graves, R. B. Freedman, G. W. Black, H. J. Gilbert and G. P. Hazlewood. 1995. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol. Lett. 125:15-22. crossref(new window)

Bae, H. D., T. A. McAllister, L. J. Yanke, K.-J. Cheng and A. D. Muir. 1993. Effect of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 59:2132-2138.

Bae, H. D., T. A. McAllister, E. G. Kokko, F. L. Leggett, L. J. Yanke, K. D. Jakober, J. K. Ha, H. T. Shin and K.-J. Cheng. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:161-181. crossref(new window)

Bauchop, T. 1981. The anaerobic fungi in rumen fiber digestion. Agric. Environ. 6:338-348. crossref(new window)

Bauchop, T. and D. O. Mountfort. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42:1103-1110.

Bayer E. A., E. Morag and R. Lamed. 1994. The cellulosome - a treasure trove for biotechnology. Trends Biotechnol. 12:379-386. crossref(new window)

Beauchemin, K. A., L. M. Rode and V. J. H. Sewalt. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci. 75:641-644. crossref(new window)

Beauchemin, K. A. and L. M. Rode. 1996. Use of feed enzymes in ruminant nutrition. In: Animal Science Research and Development--Meeting Future Challenges (Ed. L. M. Rode). Minister of Supply and Services Canada, Ottawa, ON, pp. 103-131.

Beauchemin, K. A., S. D. M. Jones, L. M. Rode and V. J. H. Sewalt. 1997. Effects of fibrolytic enzyme in corn or barley diets on performance and carcass characteristics of feedlot cattle. Can. J. Anim. Sci. 77: 645-653. crossref(new window)

Beauchemin, K. A., W. Z. Yang and L. M. Rode. 1999. Effects of enzyme additive or grain source on site and extent of nutrient digestion in dairy cows. J. Dairy Sci. 82:378-390. crossref(new window)

Beguin P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13:2558. crossref(new window)

Ben-Ghedalia, D. and J. Miron. 1981. The effect of com bined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol. Bioeng. 23:823-831. crossref(new window)

Ben-Ghedalia, D., G. Shefet, J. Miron and Y. Dror. 1982. Effect of ozone and sodium hydroxide treatments on some chemical characteristics of cotton straw. J. Sci. Food Agric. 33:1213-1218. crossref(new window)

Bernalier, A., G. Fonty, F. Bonnemoy and P. Gouet. 1993. Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. J. Gen. Microbiol. 139:873-880. crossref(new window)

Bonhomme A. 1990. Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266. crossref(new window)

Brock, F. M., C. W. Forsberg and J. G. Buchanan-Smith. 1982. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Environ. Microbiol. 44:561-569.

Burroughs, W., W. Woods, S. A. Ewing, J. Greig and A. B. Theurer. 1960. Enzyme additions to fattening cattle rations. J. Anim. Sci. 19:458-464. crossref(new window)

Carpita, N. C. and D. M. Gibeaut. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1-30 crossref(new window)

Chafe, S. C. 1970. The fine structure of the collenchyma cell wall. Planta 90:12-21. crossref(new window)

Chen, K. H., J. T. Huber, J. Simas, C. B. Theurer, P. Yu, S. C. Chan, F. Santos, Z. Wu and R. S. Swingle. 1995. Effect of enzyme treatment or steam-flaking of sorghum grain on lactation and digestion in dairy cows. J. Dairy Sci. 78:1721-1727. crossref(new window)

Cheng, K.-J. and T. A. McAllister. 1997. Compartmentation in the rumen. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Elsevier Science Publishers Ltd., London, UK, pp. 492-522.

Cheng, K.-J., C. W. Forsberg, H. Minato and J. W. Costerton. 1991. Microbial ecology and physiology of feed degradation within the rumen. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). Academic Press, New York, pp. 595-624.

Cheng, K.-J., J. P. Fay, R. N. Coleman, L. P. Milligan and J. W. Costerton. 1981. Formation of bacterial microcolonies on feed particles in the rumen. Appl. Environ. Microbiol. 41:298-305.

Cheng, K.-J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1983/84. Electron microscopy of the bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120. crossref(new window)

Chesson, A., C. S. Stewart and R. J. Wallace. 1982. Influence of plant phenolics acids on growth and cellulolytic activity of rumen bacteria. Appl. Environ. Microbiol. 44:597-603.

Chesson, A., A. H. Gordon and J. A. Lomax. 1983. Substituent groups linked by alkali-labile bonds to arabinose and xylose residues of legume, grass and cereal straw cell walls and their fate during digestion by rumen microorganisms. J. Sci. Food Agric. 34:1330-1340. crossref(new window)

Chesson, A. and C. W. Forsberg. 1997. Polysaccharide degradation by rumen microorganisms. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Elsevier Science Publishers Ltd., London, UK, pp. 329-381.

Coleman, G. S. 1986. The metabolism of rumen ciliate protozoa. FEMS Microbiol. Rev. 39:321-344. crossref(new window)

Considine, P. J and M. P. Coughlan. 1989. Production of carbohydrate-hydrolyzing enzyme blends by solid-state fermentation. In: Enzyme Systems for Lignocellulose Degradation (Ed. M. P. Coughlan). Elsevier Applied Science, New York, pp. 273-281.

Craig, W. M., G. A. Broderick and D. B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117:56-62.

Dehority, B. A. 1993. Microbial ecology of cell wall fermentation. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph). American Society of Agronomy, Inc., Crop Science Society of America, Inc. and Soil Science Society of America. Inc., Madison WI, pp. 425-453.

Deniels, L. B. and R. B. Hashim. 1977. Evaluation of fungal cellulases in rice hull based diets for ruminants. J. Dairy Sci. 60:1563-1567. crossref(new window)

Denigan, M. E., J. T. Huber, G. Alhadhrami and A. Al-Dehneh. 1992. Influence of feeding varying levels of $Amaferm^{\circledR}$ on performance of lactating dairy cows. J. Dairy Sci. 75:1616-1621. crossref(new window)

Dijkstra, J. and S. Tamminga. 1995. Simulation of the effects of diet on the contribution of rumen protozoa to degradation of fibre in the rumen. Br. J. Nutr. 74:617-634. crossref(new window)

Doerner K. C. and B. A. White. 1990. Assessment of the endo-$\beta$-1, 4-glucanase components of Ruminococcus flavefaciens FD1. Appl. Environ. Microbiol. 56:1844-1850.

Fanutti C., T. Ponyi, G. W. Black, G. P. Hazlewood and H. J. Gilbert. 1995. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 49:29314-29322.

Fahey, G. C., L. D. Bourquin Jr., E. C. Titgemeyer and D. G. Atwell. 1993. Postharvest treatment of fibrous feedstuffs to improve their nutritive value. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph). American Society of Agronomy, Inc., Crop Science Society of America, Inc. and Soil Science Society of America. Inc., Madison WI, pp 715-766.

Feng, P., C. W. Hunt, G. T. Pritchard and W. E. Julien. 1996. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. J. Anim. Sci. 74:1349-1357. crossref(new window)

Firkins, J. L., W. P. Weiss, M. L. Eastridge and B. L. Hull. 1990. Effects of feeding fungal culture extract and animal-vegetable fat on degradation of hemicellulose and on ruminal bacterial growth in heifers. J. Dairy Sci. 73:1812-1822. crossref(new window)

Flint, H. J., J. X. Zhang and J. Martin. 1994. Multiplicity and expression of xylanases in the rumen cellulolytic bacterium Ruminococcus flavefaciens. Curr. Microbiol. 29:139-143. crossref(new window)

Fonty, G. and K. N. Joblin. 1991. Rumen anaerobic fungi: their role and interactions with other rumen microorganisms in relation to fiber digestion. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). Academic Press, Toronto, ON. pp. 665-680.

Forsberg, C. W., K.-J. Cheng, P. J. Krell and J. P. Phillips. 1993. Establishment of rumen microbial gene pools and their manipulation to benefit fibre digestion by domestic animals. Proceedings VII World Conference on Animal Production, Edmonton, AB. pp. 281-316.

Forsberg, C. W. and K.-J. Cheng. 1992. Molecular strategies to optimize forage and cereal digestion by ruminants. In: Biotechnology and Nutrition (Ed. D. D. Bills and S.-D. Kung). Butterworth Heinmann, Stoneham, UK. pp. 107-147.

Forsberg, C. W. and K. Lam. 1977. Use of adenosine-5'-triphosphate as an indicator of the microbiota biomass in rumen contents. Appl. Environ. Microbiol. 33:528.

Forwood, J. R., D. A. Sleper and J. A. Henning. 1990. Topical cellulase application effects on tall fescue digestibility. Agron. J. 82:900-913.

Fry, S. C. 1986. Crosslinking of matrix polymers in the growing cell walls of angiosperms. Ann. Rev. Plant Physiol. 37:165-186. crossref(new window)

Gashe, B. A. 1992. Cellulase production and activity by Trichoderma sp. A-001. J. Appl. Bacteriol. 73:79-82. crossref(new window)

Gilbert, H. J., G. P. Hazlewood, J. I. Laurie, C. G. Orpin and G. P. Xue. 1992. Homologous catalytic domains in a rumen fungal xylanase-evidence for gene duplication and prokaryotic origin. Mol. Microbiol. 6:2065-2072. crossref(new window)

Girard, I. D. and K. A. Dawson. 1995. Stimulation of ruminal bacteria by different fractions derived from cultures of Saccharomyces cerevisiae strain 1026. J. Anim. Sci. 73(Suppl. 1):264.

Gomez-Alarcon, R. A., C. Dudas and J. T. Huber. 1990. Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. J. Dairy Sci. 73:703-710. crossref(new window)

Gordon, G. L. R. and M. W. Phillips. 1992. Extracellular pectin lyase produced by Neocallimastix sp. LM1, a rumen anaerobic fungus. Lett. Appl. Microbiol. 15:113-115. crossref(new window)

Gould, J. M. 1984. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 26:46-52. crossref(new window)

Gradel, C. M. and B. A. Dehority. 1972. Fermentation of isolated pectin and pectin from intact forage by pure cultures of rumen bacteria. Appl. Microbiol. 23:332-340.

Greve, L. C., J. M. Labavitch and R. E. Hungate. 1984. $\alpha$-LArabinofuranosidase from Ruminococcus albus 8: Purification and possible role in the hydrolysis of alfalfa cell wall. Appl. Environ. Microbiol. 47:1135-1140.

Grous, W. R., A. O. Converse and H. E. Grethlein. 1986. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enz. Microbiol. Technol. 8: 274-280. crossref(new window)

Gwayumba, W. and D. A. Christensen. 1997. The effect of fibrolytic enzymes on protein and carbohydrate degradation fractions in forages. Can. J. Anim. Sci. 77:541-542. crossref(new window)

Hartley, R. D. and D. E. Akin. 1989. Effect of forage cell wall phenolic acids and derivatives on rumen microflora. J. Sci. Food Agric. 49:405-411. crossref(new window)

Hartley, R. D. and C. W. Ford. 1989. Phenolic constituents of plant cell wall and biodegradability. In: Plant Cell Wall Polymers: Biogenesis and Biodegradation (Ed. N. G. Lewis and M. G. Paice). American Chemical Society, Washington, DC. pp. 137-147.

Hoover, W. H., C. R. Kincaid, G. A. Varga, W. V. Thayne and L. L. Junkins, Jr. 1984. Effects of solids and liquid flows of fermentation in continuous cultures. IV. pH and dilution rates. J. Anim. Sci. 58:692-699. crossref(new window)

Hristov, A. N., L. M. Rode, K. A. Beauchemin and R. L. Wuerfel. 1996a. Effect of a commercial enzyme preparation on barley silage in vitro and in sacco dry matter degradability. Proceedings, West Sect, Am Soc Anim Sci, Rapid City, SD, 47:282-284.

Hristov, A. N., T. A. McAllister and K.-J. Cheng. 1996b. Exogenous enzymes for ruminants. Proceedings, 17th West Nutr Conf, Edmonton, AB, pp. 51- 61.

Hristov, A. N., T. A. McAllister and K.-J. Cheng. 1998. Stability of exogenous polysaccharide-degrading enzyme in the rumen. Anim. Feed Sci. Technol. 76:165-172. crossref(new window)

Iwassa, A. D., L. M. Rode, K. A. Beauchemin and S. Eivemark. 1997. Effect of fibrolytic enzymes in barley-based diets on performance of feedlot cattle and in vitro gas production. In: Evolution of the Rumen Microbial Ecosystem, Joint RRIINRA Rumen Microbiology Symposium. Aberdeen, Scotland, Poster 39.

Jarvis, M. C. 1984. Structure and properties of pectin gels in plant cell walls. Plant Cell Environ. 7:153-164.

Joblin, K. N. 1981. Isolation, enumeration and maintenance of rumen anaerobic fungi in roll tubes. Appl. Environ. Microbiol. 42:1119-1122.

Joblin, K. N., G. E. Naylor and A. G. Williams. 1990. Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl. Environ. Microbiol. 56:2287-2295.

Judkins, M. B. and R. H. Stobart. 1988. Influence of two levels of enzyme preparation on ruminal fermentation, particulate and fluid passage rate and cell wall digestion in wether lambs consuming either a 10% or 25% grain diet. J. Anim. Sci. 66:1010-1015. crossref(new window)

Jung, H.-J. G. and T. Sahlu. 1986. Depression of cellulose digestion by esterified cinnamic acids. J. Sci. Food Agric. 37:659-665. crossref(new window)

Kerley, M. S., G. C. Fahey, L. L. Berger and F. Lee Baker. 1985. Alkaline hydrogen peroxide treatment unlocks energy in agricultural by-products. Science. 230: 820-822. crossref(new window)

Kopency, J., M. Marounek and K. Holub. 1987. Testing the suitability of the addition of Trichoderma viride cellulases to feed rations for ruminants. Zivocisna vyroba 32:587-592.

Krause, M., K. A. Beauchemin, L. M. Rode, B. I. Farr and P. Norgaard. 1998. Fibrolytic enzyme treatment of barley grain and source of forage in high grain diets fed to growing cattle. J. Anim. Sci. 96:1010-1015.

Kung, L. Jr. 1996. Direct-fed microbial and enzyme feed additives. In: Direct-Fed Microbial, Enzyme and Forage Additive Compendium (Ed. S. Muirhead). The Miller Publishing Company, Minetonka, MN, pp. 15-20.

Kung, L. Jr., R. J. Treacher, G. A. Nauman, A. M. Smagala, K. M. Endres and M. A. Cohen. 2000. The effect of treating forage with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. J. Dairy Sci. 83:115-122. crossref(new window)

Lam, T. B. T., K. Iiyama and B. A Stone. 1990. Primary and secondary walls of grasses and other forage plants: taxonomic and structural considerations. In: Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants (Ed. D. E. Akin, L. G. Ljungdahl, J. R. Wilson and P. J. Harris). Elsevier Science Publishers, London. pp. 43-69.

Lam, T. B. T., K. Iiyama and B. A. Stone. 1992a. Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes. Phytochem. 31:1179-1183. crossref(new window)

Lam, T. B. T., K. Iiyama and B. A. Stone. 1992b. Changes in phenolic acids from internode walls of wheat and phalaris during maturation. Phytochem. 31:2655-2658. crossref(new window)

Lappin-Scott, H. M., J. W. Costerton and T. J. Marrie. 1992. Biofilms and biofouling. In: Encyclopedia of Microbiology Vol. 1 (Ed. M. Alexandra, D. A. Hopwood, B. H. Iglewski and A. I. Laskin). Academic Press, Toronto, ON. p. 277.

Latham, M. J. 1980. Adhesion of rumen bacteria to plant cell walls. In: Microbial Adhesion to Surfaces (Ed. R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter and B. Vincent). Ellis Horwood Ltd., West Sussex, England. pp. 339-350.

Lehninger, A. L. 1982. Principles of Biochemistry, Worth Publishers, Inc., New York, NY.

Lewis, G. E., C. W. Hunt, W. K. Sanchez, R. Treacher, G. T. Pritchard and P. Feng. 1996. Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J. Anim. Sci. 74:3020-3028. crossref(new window)

Liu, J. X. and E. R. Orskov. 2000. Cellulase treatment of untreated and steam pre-treated rice straw-effect on in vitro fermentation characteristics. Anim. Feed Sci. Technol. 88:189-200. crossref(new window)

Malburg, L. M. and C. W. Forsberg. 1993. Fibrobacter succinogenes possesses at least nine distinct glucanase genes. Can. J. Microbiol. 39:882-891. crossref(new window)

Martin, S. A. and D. J. Nisbet. 1992. Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci. 75:1736-1744. crossref(new window)

Matte, A. and C. W. Forsberg. 1992. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 58:157-168.

McAllister, T. A., H. D. Bae, G. A. Jones and K.-J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018. crossref(new window)

McAllister, T. A. and K.-J. Cheng. 1996. Microbial strategies in the ruminal digestion of cereal grains. Anim. Feed Sci. Technol. 62:29-36. crossref(new window)

McAllister, T. A., A. N. Hristov, K. A. Beauchemin, L. M. Rode and K.-J. Cheng. 2001. Enzymes in ruminant diets. In: Enzymes in Farm Animal Nutrition (Ed. M. R. Bedford and G. G. Partridge). CABI Publishing, CAB International, UK. pp. 273-298.

McAllister, T. A., H. D. Bae, L. J. Yanke, K.-J. Cheng and A. D. Muir. 1993. Effect of condensed tannins from birdsfoot trefoil on endoglucanase activity and the digestion of cellulose filter paper by ruminal fungi. Can. J. Microbiol. 40:298-305. crossref(new window)

McAllister, T. A., S. J. Oosting, J. D. Popp, Z. Mir, L. J. Yanke, A. N. Hristov, R. J. Treacher and K.-J. Cheng. 1999. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci.. 79:353-360. crossref(new window)

McNeil, M., A. G. Darvill, S. C. Fry and P. Albersheim. 1984. Structure and function of the primary cell wall of plants. Annu. Rev. Biochem. 53:625-663. crossref(new window)

Minato, H., A. Endo, Y. Ootomo and T. Uemura, T. 1966. Ecological treatise on the rumen fermentation. II. The amylolytic and cellulolytic activities of fractionated bacterial portions attached to the rumen solids. J. Gen. Microbiol. 12:53-69. crossref(new window)

Morgavi, D. P., K. A. Beauchemin, V. L. Nsereko, L. M. Rode, A. D. Iwaasa, W. Z. Yang, T. A. McAllister and Y. Wang. 2000. Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum in degrading fibre substrates. J. Dairy Sci. 83:1310-1321. crossref(new window)

Morgavi, D. P., V. L. Nsereko, L. M. Rode, K. A. Beauchemin, T. A. McAllister, A. D. Iwassa, Y. Wang and W. Z. Yang. 2001. Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases. J. Anim. Sci. 79:1621-1630. crossref(new window)

Morrison, I. M. 1988. Influence of chemical and biological pretreatments on the degradation of lignocellulosic material by biological systems. J. Sci. Food Agric. 42:295-304. crossref(new window)

Morrison, I. M. 1991. Change in biodegradability of ryegrass and legume fibre by chemical and biological pretreatments. J. Sci. Food Agric. 54:521-533. crossref(new window)

Morris, E. J. and O. J. Cole. 1987. Relationship between cellulolytic activity and adhesion to cellulose in Ruminococcus albus. J. Gen. Microbiol. 133:1023-1032.

Mountfort, D. O., R. A. Asher and T. Bauchop. 1982. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in triculture with Methanobrevibacter sp. Strain RA1 and Methanosarcina barkeri. Appl. Environ. Microbiol. 44:128-134.

Muirhead, S. 1996. Direct Fed Microbial, Enzyme and Forage Additive Compendium, 3rd ed. The Miller Publishing Company, Minetonka, MN. p. 391.