Advanced SearchSearch Tips
Differential Influences in Sizes and Cell Cycle Stages of Donor Blastomeres on the Development of Cloned Rabbit Embryos
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Differential Influences in Sizes and Cell Cycle Stages of Donor Blastomeres on the Development of Cloned Rabbit Embryos
Ju, Jyh-Cherng; Yang, Jyh-Shyu; Liu, Chien-Tsung; Chen, Chien-Hong; Tseng, Jung-Kai; Chou, Po-Chien; Cheng, San-Pao;
  PDF(new window)
Experiments were conducted to evaluate the effect of blastomere diameters and cell cycle stages on the subsequent development of nuclear transplant rabbit embryos (NT-embryos) using nuclei derived from the 16- or 32-cell stage embryos. All blastomeres and NT-embryos were cultured individually in modified Ham's F-10 medium supplemented with 10% rabbit serum (RS) at and 5% in air. The diameter of blastomeres from 16-cell stage embryos was found twice of those from 32-cell stage (51 vs 27 ). Significant differences were observed in cleavage rates (3 divisions) in the isolated single blastomeres (54 vs 48 for 16-cell; 28 vs 14 for 32-cell, p<0.05), but the fusion rates of oocytes with transferred nuclei were similar between small and large single blastomeres derived from either 16-cell or 32-cell stage embryos. When 16-cell stage blastomeres were used as nuclear donors, cleavage rates (3 divisions) of the NT-embryos were greater in the small nuclear donors than in the large donors (73 vs 55%, p<0.05). On the contrary, significantly higher cleavage (43 vs 6%, p<0.05) and developmental rates (14 vs 0%, p<0.05) were observed in the large blastomere nuclear donor group of the 32-cell stage embryos. When the cell cycle stages were controlled by a microtubule polymerization inhibitor (Demicolcine, DEM) or the combined treatment of DEM and Aphidicolin (APH), a DNA polymerase inhibitor, fusion rates were 88-96% for the 16-cell donor group (without DEM treatment), which were greater than the 32-cell donor group (54-58%). Cleavage rates were also greater in the transplants derived from G1 nuclear donor group (93-95%) than those from the DEM and APH combined treatment (73%) for the 16-cell donor group (p<0.05). No significant difference was detected in the morula/blastocyst rates in either donor cell stage (p>0.05). In conclusion, it appeared that no difference in the developmental competence between large and small isolated blastomeres was observed. When smaller 16-cell stage blastomeres were used as nuclear donor, the cleavage rate or development of NT-embryos was improved and was compromised when 32-cell stage blastomeres were used. Therefore, control nuclear stage of the donor cell at phase in preactivated nuclear recipients seemed to be beneficial for the cleavage rate of the reconstructed embryo in the 16-cell transplant, but not for subsequent morula or blastocyst development.
Nuclear Transfer;Cell Cycle Stage;Blastomere;Cloned Embryo;Rabbit;
 Cited by
Cell Cycle Stage Analysis of Rabbit Foetal Fibroblasts and Cumulus Cells, Reproduction in Domestic Animals, 2004, 39, 6, 385  crossref(new windwow)
Baguisi, A., E. Behboodi, D.T. Melican, J. S. Pollock, M. M, Destrempes, C. Cammuso, J. L. Willliams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. M. Meade, R. A. Godke, W. G. Gavin, E. W. Overstrom and Y. Echelard. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotech. 17:456-461. crossref(new window)

Betthauser, J., E. Forsberg, M. Augenstein, L. Childs, K. Eilertsen, J. Enos, T. Forsythe, P. Golueke, G. Jurgella, R. Koppang, T. Lesmeister, K. Mallon, G. Mell, P. Misica, M. Pace, M. Pfister-Genskow, N. Strelchenko, G. Voelker, S. Watt, S. Thompson and M. Bishop. 2000. Production of cloned pigs from in vitro systems. Nat. Biotech. 18:1055-1059. crossref(new window)

Briggs, R. and T. J. King. 1952. Transplantation of living nuclei from blastula cells into enucleated frog eggs. Proc. Natl. Acad. Sci. USA 38:455-467. crossref(new window)

Campbell, K. H. S. 1999. Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning 1:3-15. crossref(new window)

Campbell, K. H. S., P. Loi, P. Cappai and I. Wilmut. 1994. Improved development to blastocyst of ovine nuclear transfer embryos reconstructed during the presumptive S-phase of enucleated activated oocytes. Biol. Reprod. 50:1385-1393. crossref(new window)

Campbell, K. H. S., J. McWhir, W. A. Ritchie and I. Wilmut. 1996. Sheep cloned by nulear transfer from a cultured cell line. Nature 380:64-66. crossref(new window)

Carney, E. W. and R. H. Foote. 1990. Effects of superovulation, embryo recovery, culture system, and embryo transfer on development of rabbit embryos in vivo and in vitro. J. Reprod. Fertil. 89:543-551.

Cheng, S. P., Y. C. Chang, J. C. Ju and C. L. Young. 1988. In vitro development of intact and micromanipulated rabbit embryos. In: Proceedings of the three-way faculty exchange seminar on the application of biotechnology to agriculture. Seoul, Korea, pp. 235-244.

Cibelli, J. B., S. L. Stice, P. J. Golueke, J. J. Kane, J. Jerry, C. Blackwell, F. A. Ponce de Leon and J. M. Robl. 1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256-1258. crossref(new window)

Clayton, L., A. Hall and M. H. Johnson. 1999. A role for rho-like GTPases in the polarization of mouse eight-cell blastomeres. Dev. Biol. 205:322-331. crossref(new window)

Collas, P. and J. M. Robl. 1990. Factors affecting the efficiency of nuclear transplantation in the rabbit embryo. Biol. Reprod. 43: 877-884. crossref(new window)

Collas, P. and J. M. Robl. 1991a. Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol. Reprod. 45:455-465. crossref(new window)

Collas, P. and J. M. Robl. 1991b. Development of rabbit nuclear transplant embryos from morula and blastocyst stage donor nuclei. Theriogenology 35:190 (Abstr.). crossref(new window)

Collas, P., J. J. Balise. and J. M. Robl. 1992a. Influence of cell cycle stage of the donor nucleus on development of nuclear transplant rabbit embryos. Biol. Reprod. 46:492-500. crossref(new window)

Collas, P., C. Pinto-Correia, F. A. P. D. Leon and J. M. Robl. 1992b. Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biol. Reprod. 46:501-511. crossref(new window)

Fissore, R. A., J. R. Dobrinsky, J. J. Balise, R. T. Duby. and J. M. Robl. 1992. Patterns of intracellular $Ca^{2+}$ concentration in fertilized bovine eggs. Biol. Reprod. 47:960-969. crossref(new window)

Fleming, T. P., S. J. Pickering, F. Qasim and B. Maro. 1986. The generation of cell surface polarity in mouse 8-cell balstomeres: the role of cortical microfilaments analysed using cytochalasin D. Embryol. Exp. Morphol. 95:169-191.

Foote, R. H. and M. E. Simkin. 1993. Use of gonadotropic releasing hormone for ovulating the rabbit model. Lab. Anim. Sci. 43:383-385.

Hill, J. R., A. J. Roussel, J. B. Cibelli, J. F. Edwards, N. L. Hooper, M. W. Miller, J. A. Thompson, C. R. Looney, M. E. Westhusin, J. M. Robl and S. L. Stice. 1999. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51:1451-1465. crossref(new window)

Hinegadner, R. T., B. Rao and D. E. Feldman. 1964. The DNA synthetic period during early development of the sea urchin egg. Expl. Cell Res. 36:53-61. crossref(new window)

Ito, S., K. Dan and D. Goodenough. 1981. Ultrastructure and 3Hthymidine incorporation into chromosome vesicles in sea urchin embryos. Chromosoma 83:441-453. crossref(new window)

Ju, J. C., S. P. Cheng, P. C. Tarng and K. B. Choo. 1991. In vivo development and microinjection of rabbit zygotes. Asian-Aus. J. Anim. Sci. 4:73-78.

Ju, J. C., Y. C. Chang, W. T. Huang, P. C. Tang and S. P. Cheng. 2000. Superovulation and transplantaiton of demi- and aggregated embryos in rabbits. Asian-Aust. J. Anim. Sci. 14: 455-461.

Ju, J. C., J. S. Yang, C. T. Liu, C. H. Chen, P. C. Chou, J. K. Tseng and S. P. Cheng. 2000. Effects of size and cell cycle stages of nuclear donor cells on the developmental competence of cloned rabbit embryos. Biol. Reprod. 62:248(Abstr.). crossref(new window)

Koyama, H., H. Suzuki, X. Yang, S. Jiang and R. H. Foote. 1994. Analysis of Polarity of Bovine and Rabbit Embryos by Scanning Electron Microscopy. Biol. Reprod. 50:163-170. crossref(new window)

Kubota, C., H. Yamakuchi, J. Todoroki, K. Mizoshita, N. Tabara, M. Barber and X. Yang. 2000. Six cloned calves produced from adult fibroblast cells after long-term culture. Proceedings of National Academic Science (USA) 97:990-995. crossref(new window)

Laskey, R. A., A. D. Mills and N. R. Morris. 1977. Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237-243. crossref(new window)

Levy, J. B., M. H. Johnson, H. Goodall and B. Maro. 1986. The timing of compaction: Control of a major developmental transition in mouse early embryogenesis. J. Embryol. Exp. Morphol. 95:213-237.

McGrath, J. and D. Solter. 1983. Nuclear transplantation in mouse embryo by microsurgery and cell fusion. Science 220:1300-1302. crossref(new window)

McGrath, J. and D. Solter. 1984a. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317-1319. crossref(new window)

McGrath, J. and D. Solter. 1984b. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179-183. crossref(new window)

Meng, L., J. J. Ely, R. L. Stouffer and D. P. Wolf. 1997. Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57:454-459. crossref(new window)

Newport, J. W. and M. W. Kirschner. 1986. A major developmental transition in early Xenopus. I. Characterization and timing of cellular changes at midblastula stage. Cell 30:675-686. crossref(new window)

Onishi, A., M. Iwamoto, T. Akita, S. Mikawa, K. Takeda, T. Awata, H. Hanada and A. C. F. Perry. 2000. Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188-1190. crossref(new window)

Ozil, J. P. and J. A. Modlinski. 1986. Effects of electric field on fusion rate and survival of 2-cell rabbit embryos. J. Embryol. Exp. Morph. 96:211-228.

Prather, R. S., A. C. Boquest and B. N. Day. 1999. Cell cycle analysis of cultured porcine mammary cells. Cloning 1:17-24. crossref(new window)

Prather, R. S., T. Tao and Z. Machaty. 1999. Development of the techniques for nuclear transfer in pigs. Theriogenology 51:487-498. crossref(new window)

Polejaeva, I. A., S. H. Chen, T. D. Vaught, R. L. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D. L. Ayares, A. Colman and K. H. S. Campbell. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86-90. crossref(new window)

Robl, J. M. 1999. Development and application of technology for large scale cloning of cattle. Theriogenology 51:499-508. crossref(new window)

Seidel, G. E., Jr., A. Brown and M. T. Kane. 1976. In vitro fertilization, culture, and transfer of rabbit ova. Fertil. Steril. 27:861-870.

Sefton, M., M. H. Johnson and L. Clayton. 1992. Synthesis and phosphorylation of uvomorulin during mouse early development. Development 115:313-318.

Smith, L. C. and I. Wilmut. 1989. Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biol. Reprod. 40:1027-1035. crossref(new window)

Spemann, H. 1938. Embryonic development and induction. Hafner, New York.

Stice, S. L., J. Gibbons, S. J. Rzucidlo and C. A. Baile. 2000. Improvements in nuclear transfer procedures will increase commercial utilization of animal cloning. Asian-Aus. J. Anim. Sci. 13:856-860.

Stice, S. L. and C. L. Keefer. 1993. Multiple generational bovine embryo cloning. Biol. Reprod. 48:715-719. crossref(new window)

Stice, S. L. and J. M. Robl 1988. Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39:657-664. crossref(new window)

Tao, T., A. C. Boquest, Z. Machaty, A. L. Petersen, B. N. Day and R. S. Prather. 1999. Development of pig embryos by nuclear transfer of cultured fibroblast cells. Cloning 1:55-62. crossref(new window)

Wakayama, T., A. C. F. Perry, M. Zuccotti, K. R. Jonhnson and R. Yanagimachi. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369-374.

Wells, D. N., P. M. Misica, H. R. Tervit and W. H. Vivanco. 1998. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod. Fertil. Dev. 10:369-378. crossref(new window)

Wells, D. N., P. M. Misica and H. R. Tervit. 1999. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60:996-1005. crossref(new window)

Wilmut, A. E. S., J. McWhir, A. J. Kind and K. H. S. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cell. Nature 385:810-813. crossref(new window)

Wolf, D. P., L. Meng, N. Ouhibi and M. Zelinski-Wooten. 1999. Nuclear transfer in the Rhesus monkey: practical and basic implications. Biol. Reprod. 60:199-204. crossref(new window)

Yang, X., Y. Chen and R. H. Foote. 1990a. Potential of hypertonic medium treatment for embryo micromanipulation: I. Survival of rabbit embryos in vitro and in vivo following sucrose treatment. Mol. Reprod. Dev. 27:110-117. crossref(new window)

Yang, X., L. Zhang, A. Kovacs, C. Tobback and R. H. Foote. 1990b. Potential of hypertonic medium treatment for embryo micromanipulation: II. Assessment of nuclear transplantation methodology, isolation, subzona insertion, and electrofusion of blastomeres to intact or functionally enucleated oocyte in rabbits. Mol. Reprod. Dev. 27:118-129. crossref(new window)

Zakahrtchenko, V., R. Alberio, M. Stojkovic, K. Prelle, W. Schernthaner, P. Stojkovic, H. Wenigerkind, R. Wanke, M. Duchler, R. Steinborn, M. Mueller, G. Brem and E. Wolf. 1999. Adult cloning in cattle: potential of nuclei from a permanent cell line and from primary cultures. Mol. Reprod. Dev. 54:264-272. crossref(new window)

Zimmermann, U. and J. Vienken. 1982. Electric field-induced cell-to-cell fusion. J. Mem. Biol. 67:165-82.