Advanced SearchSearch Tips
Microbial Transglutaminase Modifies Gel Properties of Porcine Collagen
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Microbial Transglutaminase Modifies Gel Properties of Porcine Collagen
Erwanto, Y.; Kawahara, S.; Katayama, K.; Takenoyama, S.; Fujino, H.; Yamauchi, K.; Morishita, T.; Kai, Y.; Watanabe, S.; Muguruma, M.;
  PDF(new window)
We studied the gel properties of porcine collagen with microbial transglutaminase (MTGase) as a catalyst. A creep meter was used to measure the mechanical properties of gel. The results showed samples with high concentration of MTGase gelled faster than those with a low concentration of MTGase. The gel strength increased with incubation time and the peaks of breaking strength for 0.1, 0.2 and 0.5% MTGase were obtained at 40, 20 and 10 min incubation time, respectively. According to SDS-PAGE, the MTGase was successfully created a collagen polymer with an increase in molecular weight, whereas no change in formation was shown without MTGase. The sample with 0.5% MTGase began to polymerize after 10 or 20 min incubation at , and complete polymerization occurred after 40-60 min incubation. Scanning electron microscopic analysis revealed that the gel of porcine collagen in the presence of MTGase produced an extremely well cross-linked network. The differential scanning calorimetric analysis showed the peak thermal transition of porcine collagen gel was at , and that with MTGase no peak was detected during heating from 20 to . The melting point of porcine collagen gel could be controlled by MTGase concentration, incubation temperature and protein concentration. Knowledge of the structural and physicochemical properties of porcine collagen gel catalyzed with MTGase could facilitate their use in food products.
Porcine Collagen Gel;Microbial Transglutaminase;Structural and Physicochemical Properties;Melting P;
 Cited by
Alting A. C., R. J. Hamer, C. G. De Kraif and R. W. Visschers. 2000. Formation of disulfide bonds in acid induced gels of preheated whey protein isolate. J. Agric. Food Chem. 48:5001-5007. crossref(new window)

Ando, H., M. Adachi, K. Umeda, A. Matsura, M. Nonaka, R. Uchio, H. Tanaka and M. Motoki. 1989. Purification and characteristics of novel food transglutaminase derived from microorganism. Agric. Biol. Chem. 53:2613-2617.

Ashie, I. N. A. and T. C. Lanier. 1999. High pressure effects on gelation of surimi and turkey breast muscle enhanced by microbial transglutaminase. J. Food Sci. 64:704-708. crossref(new window)

Chronakis, I. S. 2001.Gelation of edible blue-green algae protein isolate (Spirulina platensis strain pacifica): thermal transitions, rheological properties, and molecular forces involved. J. Agric. Food Chem. 49:888-898. crossref(new window)

Chartoff, R. P. 1997. Thermoplastic polymers. In: Thermal Characterization of Polymeric Materials. 2nd ed., Volume 1, (Ed. E. A. Turi). Academic Press, New York. pp. 483-743.

Erwanto, Y., M. Muguruma, S. Kawahara, T. Tsutsumi , K. Katayama, K.Yamauchi, T. Moroshita, Y. Kai and S. Watanabe. 2002. Effect of heating on polymerization of pig skin collagen using microbial transglutaminase. Asian-Aust. J. Anim. Sci. 15:1204-1209.

Fujisaki, H. and S. Hattori. 1999. Gelatin-binding immunoglobulins in normal bovine serum. Connective Tissue. 31:155-160.

Handa, A., K. Hayashi, H. Shidara and N. Kuroda. 2001. Correlation of the protein structure and gelling properties in dried egg white products. J. Food Sci. 48:3957-3964.

Imm, J. Y., P. Lian and C. M. Lee. 2000. Gelation and water binding properties of transglutaminase-treated skim milk powder. J. Food Sci. 65:200-205. crossref(new window)

Jiang, S. T., J. F. Hsieh, M. L. Ho and Y. C. Chung. 2000. Microbial transglutaminase affects gel properties of Golden Threadfin-bream and Pollack Surimi. J. Food Sci. 65:694-699. crossref(new window)

Jiang, S. T., S. Z. Leu and G. J. Tsai. 1998. Cross-linking of Mackerel Surimi actomyosin by microbial transglutaminase and ultraviolet irradiation. J. Agric. Food Chem. 46:5278-5282. crossref(new window)

Kang, I. J, Y. Matsumura, K. Ikura, M. Motoki, H. Sakamoto and T. Mori. 1994. Gelation and properties of soybean glycinin in a transglutaminase-catalyzed system. J. Agric. Food Chem. 42:159-165. crossref(new window)

Kitabatake, N., Y. Tani and E. Doi. 1989. Rheological properties of heat induced ovalbumin gels prepared by two-step and onestep heating methods. J. Food Sci. 54:1632-1638. crossref(new window)

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. crossref(new window)

Lee, C. and C. Rha. 1979. Rheological properties of proteins in solution. In: Food Texture and Rheology (Ed. Sherman). Academic Press Inc. New York. p. 257.

Lim, L. T., Y. Mine and M. A. Tung. 1999. Barrier and tensile properties of transglutamimnase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. J. Food Sci. 64:616-622. crossref(new window)

Mizuno, A., M. Mitsuiki and M. Motoki. 1999. Glass transition temperature of casein as affected by transglutaminase. J. Food Sci. 64:796-799. crossref(new window)

Muguruma, M., K. Tsuruoka, H. Fujino, S. Kawahara, K. Yamauchi, S. Matsumura and T. Soeda. 1999. Gel strength enhancement of sausages by treating with microbial transglutaminase. Proceedings of the 45th International Congress of Meat Science and Technology. Yokohama, Japan. 1:138-139.

Muguruma, M., K. Tsuruoka, K. Katayama, Y. Erwanto, S. Kawahara, K. Yamauchi, S. K. Sathe and T. Soeda. 2003. Soybean and milk proteins modified by transglutaminase improves chicken sausage texture even at reduced levels of phosphate. Meat Sci. 63:191-197. crossref(new window)

Motoki, M. and K. Seguro. 1998. Transglutaminase and its use for food processing. Trends in Food Sci. Technol. 9:204-210. crossref(new window)

Nomura, Y., S. Toki, Y. Ishii and K. Shirai. 2000. Improvement of material property of shark type I collagen by composing with porcine type I collagen. J. Agric. Food Chem. 48:6332-6336.

Nomura, Y., S. Toki, Y. Ishii and Shirai K. 2001. Physicochemical property of transglutaminase crosslinked pig collagen gel. J. Anim. Sci. 72:322-328.

Nonaka, M., H. Sakamoto, S. Toiguchi, H. Kawajiri, T. Soeda and M. Motoki. 1992. Sodium caseinate and skim milk gels formed by incubation with microbial transglutaminase. J. Food Sci. 57:1214-1218. crossref(new window)

Sakamoto, H., Y. Kumazawa and M. Motoki. 1994. Strength of protein gels prepared with microbial transglutaminase as related to reaction condition. J. Food Sci. 59:866-871. crossref(new window)

Sakamoto, H., Y. Kumazawa, S. Toiguchi, K. Seguro, T. Soeda and M. Motoki. 1995. Gel strength enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J. Food Sci. 60:300-304. crossref(new window)

Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach 2nd ed. McGraw Hill Book Co., Inc., New York.

Takahashi, K. and M. Hattori. 1993. Edible meat casing from reconstruction of collagen-elastin matrix. J. Food Sci. 58:734-738. crossref(new window)

Takahashi, K., Y. Nakata, K. Someya and M. Hattori. 1999. Improvement of the physical properties of pepsin solubilized elastin-collagen film by cross lingking. Biosci. Biotechnol. and Biochem. 63:2144-2149. crossref(new window)

Tsai, G. J., S. M. Lin and S. T. Jiang. 1996. Transglutaminase from Streptoverticillium ladakanum and application to minced fish products. J. Food Sci. 61:1234-1238. crossref(new window)

Tseng, T. F., D. C. Liu and M. T. Chen. 2002. Evaluation of transglutaminase from pig plasma on the quality of milk curd. Asian-Aust. J. Anim. Sci. 15:106-110.

Watanabe, K, Y. Tezuka and T. Ishii. 1997. Configuration between re-formed collagen triple helices and artificially introduced cross-links in gelatin gels. Macromolecules. 30:7910-7913. crossref(new window)

Yoshimura, K., M. Terashima, D. Hozan, T. Ebato, Y. Nomura, Y. Ishii and K. Shirai. 2000. Physical properties of shark gelatin compared with porcine gelatin. J. Agric. Food Chem. 48:2023-2027. crossref(new window)