Advanced SearchSearch Tips
Effect of Ionophore Enriched Cold Processed Mineral Block Supplemented with Urea Molasses on Rumen Fermentation and Microbial Growth in Crossbred Cattle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Ionophore Enriched Cold Processed Mineral Block Supplemented with Urea Molasses on Rumen Fermentation and Microbial Growth in Crossbred Cattle
De, Debasis; Singh, G.P.;
  PDF(new window)
An experiment was conducted to study the effect of ionophore enriched cold processed mineral block supplemented with urea molasses on microbial growth and rumen fermentation. Twelve adult male crossbred cattle were divided into four groups on body weight basis. Animals were given wheat straw as a basal diet. The animals of group I and II were supplemented with concentrate mixture and animals of group III and IV were supplemented with cold processed urea molasses mineral block (UMMB). Thirty mg monensin/day/animal were supplemented to the animals of group II and 35 ppm monensin were incorporated in the UMMB supplemented to the animals of group IV. Dry matter (DM) intake did not differ significantly among groups. Mean rumen pH was higher in UMMB fed animals. Total volatile fatty acids (TVFA) concentration (mmole/L strained rumen liquor (SRL) in group III (113.19) was significantly (p<0.05) higher than those of group I (105.83) and II (108.74) but similar to group IV (109.34). TVFA production (mole/day) was similar in all the groups. The molar proportion of acetate was significantly (p<0.01) higher in the group I (59.56) than those of group II (51.73) and IV (55.91) but similar to group III (57.12). The molar proportion of propionate was significantly (p<0.01) higher in the monensin treated groups i.e. group II (38.38) and IV (36.26) than those of group I (27.78) and III (33.06). Butyrate molar percent was significantly (p<0.01) higher in group I (12.65) than those of group II (10.19), group III (9.83) and IV (7.84). The reduction of acetate and butyrate was due to UMMB and monensin resulted in lower A:P ratio. Average bacterial pool and bacterial production rate did not differ significantly among groups. Total N concentration (mg/100 ml SRL) was significantly (p<0.01) higher in the group I (55.30) and III (57.70) as compared to the group II (47.97) and IV (47.59). Ammonia-N concentration (mg/100 ml SRL) of group III (34.99) was significantly (p<0.01) higher than that of the group I (25.76) which was again significantly (p<0.01) higher than that of the group II (20.79) and IV (19.83) indicating slower release of ammonia due to monensin in diet. Total bacterial, cellulolytic, proteolytic bacterial and fungal count at 4 h post feeding did not differ significantly (p<0.05) among treatment groups. However, methanogenic bacterial count was significantly (p<0.01) higher in the group I (11.80) compared to the group II (8.43) which was significantly (p<0.01) higher than that of the group III (4.70) and IV (2.90). Average protozoal population was affected by both treatments. Thus feeding of UMMB and monensin in diet affected the rumen fermentation pattern towards propionate production, slower release of ammonia and reduction in methanogenic bacteria in the rumen.
Ionophor;UMMB;Rumen Fermentation;
 Cited by
Abou Akkada, A. R. and T. H. Blackburn. 1962. Medium for proteolytic rumen bacteria. Methods in Microbiol. 3B:140-141

AOAC. 1984. Official Analytical Methods. Association of Official Analytical Chemists. Washington, DC

Badawy, S. A., M. Younis, M. R. Shalash, M. F. Nawito, S. A. Mansour and G. Rakha. 1996. Monensin effects on rumen metabolic profile, methane production and protozoal population in buffalo heifers. Egytion J. Vet. Sci. 30:49-56

Bergen, W. G. and D. B. Bates. 1984. Ionophores: Their effect on production efficency and mode of action. J. Anim. Sci. 58: 1465-1483

Boiling, J. A., N. W. Bradley and L. D. Campbell. 1977. Monensin levels for growing and finishing streers. J. Anim. Sci. 44:867-871

Cann, I. K. O., Y. Kobayashi, A. Onoda, M. Wakita and S. Hoshino. 1993. Effect of some ionophore antibiotics and polyoxins on the growth of anaerobic rumen fungi. J. Appl. Bacteriol. 74:s 127-133

Chen, M. and M. J. Wolin. 1979. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen Saccharolytic bacteria. Appl. Environ. Microbiol. 38:72-77

Davis., G. V. and A. B. Erhat. 1976. Effects of monensin and urea in funishing streer rations. J. Anim. Sci. 43:1-8

Dellinger, C. A. and J. G. Ferry. 1984. Effect of monensin on growth and methanogenesis of Methanobacterium formicicum. Appl. Environ. Microbiol. 52:418-426

Dennis, S. M., T. G. Nagaraja and E. E. Bartley. 1981. Effects of lasalocid or monensin on lactate producing or using rumen bacteria. J. Anim. Sci. 52:418-426

Dyer, I. A., R. M. Koes, M. L. Herlugson, L. B. Ojikutu, L. B. Preston, R. L. Zimmer and R. Delay. 1980. Effect of avoparcin and monensin on performance of finishing heifers. J. Anim. Sci. 51:843-846

Dyer, I. A., R. M. Koes, M. L. Herlugson, L. B. Ojikutu, L. B. Preston, R. L. Zimmer and R. Delay. 1980. Effect of avoparcin and monensin on performance of finishing heifers. J. Anim. Sci. 51:843-846

Erwin, E. S., G. A. Macro and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1775

Fitzgerald, Paul R. and M. E. Mansfield. 1973. Efficacy of monensin against bovine coccidiosis in young Holstein Fresian Calves. J. Protozool. 20:121-124

Garg, M. R. 1989. Effect of supplementation straw based diet with urea molasses mineral block licks on rumen fermentation pattern, nutrient utilisation and growth in corssbred cattle. Ph.D. Thesis, Kurukshetra Univ., Kurukshetra, India

Gray, F. V., G. B. Jones and A. F. Pilgrims. 1960. The rates of production of volatile fatty acids in the rumen. Aust. J. Agric. Res. 11:383-389 crossref(new window)

Gupta, B. N., S. A. Khan and V. N. Murthy. 1970. Rumen digestion studies on feeding urea molasses enriched cereal straw to adult ruminants. India Vet. J. 47:773-778

Haimoud, D. A., M. Vernay, C. Bayourthe and R. Moncoulon. 1995. Avoparcin and monensin effects on the digestion of nutrients in dairy cows fed a mixed diet. Can. J. Anim. Sci. 74:379-385

Haney, M. E. Jr. and Hoehn. 1968. Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob. Agents Chemother, 1967. pp. 34-352

Hilpert, R., J. Winter, W. Hammes and O. Kandler. 1981. The sensitivity of archaebacteria to antibiotics. Zentralbl. Bakteriol. Hyg. Abt. Originale C, 2:11.20

Hino, T., H. Saitoh, T. Miwa, M. Kanda and S. Kumajawa. 1994. Effect of aibellin, a peptide antibiotic, on propionate production in the rumen of goats. J. Dairy Sci. 77:3426-3431

Hungate, R. E. 1957. Microorganisms in rumen of cattle fed on constant ration. Can. J. Microbiol. 3:289-298

Joblin, K. N. 1981. Isolation, enumeration and maintenance of rumen anaerobic fungi in rolled tubes. Appl. Environ. Microbiol. 42:1119-1122

Joyner, A. E. Jr., L. J. Brown, T. J. Pogg and R. T. Rossi. 1979. Effect of monensin on growth, feed efficiency and energy metabolism of lambs. J. Anim. Sci. 48:1065-1071

Kearl, C. L. 1982. Nutrients requirement of ruminants in developing countries. International Feedstuffs Institute. Utah Agricultural Experiment Station, Utah State University, Logan Utah

Langer, P. N., G. S. Sidhu and I. S. Bhatia. 1968. A study of microbial population in the rumen of buffalo Bos bubalis and Zebu Bos indicus on a feeding regime deficient in carbohydrate. Indian J. Vet. Sci. Anim. Husb. 38:333-338

Lehninger, A. L., D. L. Nelson and M. M. Cox. 1993. Principles of Biochemistry 2nd edn. CBS. Publishers & Distrubutors. New Delhi, p. 325

Mbanzamihigo, L., C. J. Van Nevel and D. I. Demeyer. 1996. Lasting effet of monensin on rumen and caecal fermentation in sheep fed a high grain diet. Anim. Feed Sci. Technol. 62:215-218 crossref(new window)

Poos, M. I., T. L. Hanson and T. J. Klopfenstein. 1979. Monensin effects on diet digestibility, ruminal protein bypass and microbial protein synthesis. J. Anim. Sci. 48:1516-1523

Potter, E. L., A. P. Raun, C. O. Cooley, R. P. Rathmacher and L. F. Richardson. 1976. Effect of monensin on carcass characteristics, carcass composition and efficiencyu of converting feed to carcass. J. Anim. Sci. 43:678-683

Qi, K., C. D. Lu and F. N. Owens. 1993. Sulfate supplementation of growing goats: Effects on performance, acid base balance and nutrient digestibility. J. Anim. Sci. 71:1579-1587

Ranade, D. R. and R. V. Gadre. 1988. Microbiological aspects of anaerobic digestion. Laboratory manual. Published by Maharastra Association for the Cultivation of Science, Research Institute, Pune, p. 67

Raun, A. P., C. O. Cooley, E. L. Potter, R. P. Rathmacher and L. F. Richardson. 1976. Effect of monensin and feed efficiency of feedlot cattle. J. Anim. Sci. 43:670-677

Scheifinger, C. C. and M. J. Wolin. 1973. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogens and Selenomonas ruminantium. Appl. Microbiol. 26:789-795

Singh, G. P., B. N. Gupta and M. Mohini. 1995. Effect of supplementation of UMM licks to straw diet on DM intake, volatile fatty acids and methane production. Indian. J. Dairy Sci. 48:290-294

Smith, R. M. 1959. The development and function of rumen in milk fed calves. Indian J. Agric. Sci. 52:72-77

Snedecor, G. W. and W. G. Cochran. 1986. Statistical Methods. Oxford and IBH Publishing Co., Calcutta, India

Srinivas, B. and B. N. Giupta. 1997. Rumen fermentation bacterial and total volatile fatty acid, TVFA production rate in cattle fed on urea molasses mineral block lick supplement. Anim. Feed Sci. Technol. 65:275-286 crossref(new window)

Starness, S. R., J. W. Spears, M. A. Froetschel and W. J. Jr. Croom. 1984. Influence of monensin and lasalocid on mineral metabolism and ruminal urease activity in strees. J. Nutr. 114: 518-525

Suda, K., M. Hiramatsu, Y. Motoi, M. Wakita and S. Hoshino. 1995. Effect of ionophores on lactate and endotoxin production in the in vitro incubation of ruminal fluid. Anim. Feed Sci. Technol. 66:869-874

Theurer, R., H. Bristol and W. H. Hale. 1974. Dietary regimen and post parandial plasms VFA levels in cattle. J. Anim. Sci. 39: 255-261

Thomas, P. C. 1973. Microbial protein synthesis. Proc. Nutr. Soc. 32:85

Van Nevel, C. J. and D. I. Demeyer. 1977. Effecft of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 34:251-257.

Zinn, R. A. and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-166.

Zinn, R. A., M. K. Song and T. O. Lindsay. 1991. Incluence of ardacin supplementation on feedlot performance and digestive function of cattle. J. Anim. Sci. 69:1389-1396.