JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Bacterial Fraction and Proportion of Silage and Concentrate on Rumen Fermentation and Gas Production Profile
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Bacterial Fraction and Proportion of Silage and Concentrate on Rumen Fermentation and Gas Production Profile
Lee, Sang S.; Chang, M.B.; Ha, J.K.;
  PDF(new window)
 Abstract
An in vitro experiment was carried out to investigate effects of solid associated (SAB) and liquid associated bacteria (LAB) and the type of incubation substrate on ruminal fermentation and gas production profiles. Bacterial fraction did not influence total numbers of bacteria. Gas production degradation parameters were significantly influenced by bacterial fraction and type of substrate (p<0.05). There was significant interaction between bacterial fraction and type of substrate in gas production (p<0.01). Total VFA concentration and acetic and propionic acid ratio were also influenced by bacterial fraction and type of substrate with little differences in individual VFA concentration.
 Keywords
Gas Production;Bacterial Fraction;VFA Concentration;Interaction;
 Language
English
 Cited by
 References
1.
Blummel, M. and E. R. Orskov. 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting food intake in cattle. Anim. Feed Sci. Technol. 40:109-119. crossref(new window)

2.
Cheng, K. J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1983. Electron microcopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120.

3.
Cone, J. W., A. H. van Gelder, W. V. Gert and Leen Oudshoorn. 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 61:113-128.

4.
Cone, J. W., A. H. van Gelder and F. Driehuis. 1997. Description of gas production profiles with a three-physics model. Anim. Feed Sci. Technol. 66:31-45. crossref(new window)

5.
Cone, J. W., A. H. van Gelder and H. Bachmann. 2002. Influence of inoculum source on gas production profiles. Anim. Feed Sci. Technol. 99:221-231.

6.
De Man, J. C. 1974. The probability of most of probable numbers. European J. Microbiol. 1:67-78.

7.
Dehority, B. A., P. A.Tirabasso and A. P. Grifo, Jr. 1989. Most probable number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Appl. Environ. Microbiol. 55:2798-2792.

8.
Dehority, B. A. and C. G. Orpin. 1997. Development of, and natural fluctuations in, rumen microbial populations. The Rumen Microbial Ecosystem. P. N. Hobson and C. S. Stewart. London, Blackie Academic & Professional: 196-245.

9.
Erwin, W. S., J. Macro and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluids by gas chromatography. J. Dairy Sci. 44:1786.

10.
Fakhri, S., A. R. Moss, D. I.Givens and E. Owen. 1998. Comparison of four in vitro gas production methods to study rumen fermentation kinetics of starch-rich feeds. Proc. Br. Soc. Anim. Sci. p. 196.

11.
Krause, D. O., W. J. M. Smith, F. M. E. Ryan, R. I. Mackie and C. S. McSweeney. 2000. 'Use of 16S-rRNA based techniques to investigate the ecolgocial succession of microbial populations in the immature lamb rumen: Tracking of a specific strain of inoculated Ruminococcus and interactions with other microibal populations in vivo.' Microb. Ecol. 38:365-376.

12.
Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim, K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci. 16(8):1143-1150.

13.
Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim and K. J. Kim. 2003. Mathane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci. vol. 16(8):1143-1150.

14.
Maeng, W. J., C. J. Van Nevel, R. L. Baldwin and J. G. Morris. 1976. Rumen microbial growth rates and yields: effect of amino acids and protein. J. Dairy Sci. 59(1):68-79.

15.
Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agri. Sci. 93:217-222.

16.
Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.

17.
Merry, R. J. and A. B. McAllan. 1983. A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. Br. J. Nutr. 50:701.

18.
Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. Camb. 92:499-503.

19.
Pell, A. N. and P. Schofield. 1993. Computerized monitoring of gas production to measure forage digestion in vitro. J. Dairy Sci. 76:1063-1073.

20.
Rymer, C., J. A. Huntington and D. I. Givens. 1999. Effects of inoculum preparation method and concentration, method of inoculation and pre-soaking the substrate on the gas production profile of high temperature dried grass. Anim. Feed Sci. Technol. 78:199-213.

21.
SAS. 1994. SAS/GLM user guide (Version 6.4 th Ed.). SAS Inst, Inc., Cary, NC.

22.
Senshu, T., K. Nakamura, A. Sawa, H. A. Miura and T. Matsumoto. 1980. Inoculum for in vitro rumen fermentation and composition of volatile fatty acids. J. Dairy Sci. 63:305-312.

23.
Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197.

24.
Tilley, J. M. and R. A. Terry. 1963. A two stage technique for the in vitro digestion of forage crops. J. Br. Grassland Society. 18:10-111.