Advanced SearchSearch Tips
A Study on Effect of Carrying FecB Gene on Body Weight in Garole and Garole×Malpura Sheep
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Effect of Carrying FecB Gene on Body Weight in Garole and Garole×Malpura Sheep
Kolte, A.P.; Mishra, A.K.; Kumar, S.; Arora, A.L.; Singh, V.K.;
  PDF(new window)
High prolificacy in Garole sheep is due to existence of FecB mutation in an autosomal gene, bone morphogenetic protein receptor. The mutation enhances ovulation rate and in turn litter size in Garole sheep. Garole sires were crossed with non-prolific Malpura ewes with the aim to introduce prolificacy into GaroleMalpura (GM) crosses through FecB introgression programme. In the present study, the effect of carrying booroola allele on litter size and live body weight was analyzed. The average litter size at birth was found to be 1.87 and 1.48 in the Garole and the GM crosses, respectively. At weaning, 6-month, 9-month and 12-month of age, body weights were not affected by the presence of booroola allele (p>0.05); however, a significant effect (p<0.05) was found on body weight at birth in GM crosses. In Garole sheep, no significant effect of FecB was observed on live weights in any age group. The interaction between the genetic group and the FecB genotype was also found to be non-significant.
Garole;GaroleMalpura;Litter Size;Body Weight;FecB Gene;
 Cited by
Effects of the Booroola (FecB) genotypes on growth performance, ewe's productivity efficiency and litter size in Garole×Malpura sheep, Animal Reproduction Science, 2008, 105, 3-4, 319  crossref(new windwow)
Genetic analysis for growth traits of prolific Garole × Malpura (GM) sheep, Tropical Animal Health and Production, 2011, 43, 2, 299  crossref(new windwow)
Carrying the FecB (Booroola) mutation is associated with lower birth weight and slower post-weaning growth rate for lambs, as well as a lighter mature bodyweight for ewes, Reproduction, Fertility and Development, 2006, 18, 4, 433  crossref(new windwow)
Bose, S. and D. N. Moitra. 1995. Bengal breed of sheep in the Sunderbans. Asian Livestock pp. 16-17.

Bose, S., R. Dutta Gupta and D. N. Moitra. 1999. Reproductive performance of Bengal sheep in Sunderbans. Indian J. Anim. Prod. Mgmt. 15:157-160.

Davis, G. H., S. M. Galloway, K. I. Ross, M. S. Gregan, J. Ward, V. B. Nimbkar, M. P. Ghalsasi, C. Nimbkar, D. G. Gray, Subandryo, I. Inounu, B. Tiesnamuiti, E. Martyniuk, E. Eythorsdottir, P. Mulsant, F. Lecerf, P. J. Hanrahan, E. G. Bradford and T. Wilson. 2002. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biol. Reprod. 66:1869-1874.

Elsen, J. M., L. Bodin and J. Thimonier. 1990. Major genes for reproduction in sheep. Second international Booroola workshop. Toulous, France, July 16-18.

Fabre, S., A. Pierre, C. Pisselet, P. Mulsant, F. Lecerf, J. Pohl, P. Monget and D. Monniaux. 2003. The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality. J. Endocrinol. 177:435-44.

Ghalsasi, P. M. and B. V. Nimbkar. 1993. The Garole-Microsheep of Bengal, India. Anim. Genet. Reso. Inform. 12:73-79.

Kleeman, D. O., R. W. Ponzoni, J. E. Stafford and R. J. Grimson. 1985. Growth and carcass characters of South Australian Merino and its crosses with the Booroola and Trangie fertility Merino. Aust. J. Expt. Agri. 25:750-757.

Mishra, A. K., A. L. Arora, S. Kumar, R. C. Sharma and V. K. Singh. 2005. Malpura: A mutton type sheep breed. Central Sheep and Wool Research Institute, Avikanagar, Rajasthan-304501.

Montgomery, G. W., K. P. McNatty and G. H. Davis. 1992. Physiology and molecular genetics of mutations that increase ovulation rate in sheep. Endocrine Reviews. 13:309-320.

Nimbkar, C., P. M. Ghalsasi, J. F. Maddox, V. C. Pardeshi, M. N. Sainani, V. Gupta and S. W. Walkden-Brown. 2003. Expression of FecB gene in Garole and Crossbred ewes in Maharastra, India. Proceedings of the fifteenth conference of AAABG, Melbourne, Australia. pp. 111-114.

Sharma, R. C., A. L. Arora and B. U. Khan. 2001. Garole: A prolific sheep of India. Central Sheep and Wool Research Institute, Avikanagar, Rajasthan-304501.

Sharma, R. C., A. L. Arora, H. K. Narula and R. N. Singh. 1999. Characteristics of Garole sheep in India, Anim. Genet. Reso. Inform. 26:57-64.

Sharma, R. C., A. L. Arora, A. K. Mishra, S. Kumar and V. K. Singh. 2004. Breeding prolific Garole with Malpura sheep for increased reproductive efficiency in semi-arid tropics of India. Asian-Aust. J. Anim. Sci. 17:737-742.

Smith, P. O. W. S., N. L. Hudson, L. Shaw, D. A. Heath, L. Condell and K. P. Phillips McNatty. 1993. Effects of the Booroola gene (FecB) on body weight, ovarian development and hormone concentarations during fetal life. J. Reprod. Fertil. 98:41-54.

Visscher, A. H., M. Dijkstra, E. A. Lord, R. Suss, H. J. Rosler, K. Heylen and R. F. Veerkamp. 2000. Maternal and lamb carrier effects of the Booroola gene on food intake, growth and carcass quality of male lambs. Anim. Sci. 71:209-217.

Walling, G. A., K. G. Dodds, S. M. Galloway, A. E. Beattie, E. A. Lord, J. M. Lumsden, G. W. Montgomery and J. C. McEwan. 2000. The consequences of carrying the Booroola fecundity (FecB) gene on sheep live weight. Proceed. Br. Soc. Anim. Sci. p. 43.

Willingham, T. D., D. W. Waldron and P. V. Thompson. 2002. Effect of $Fec^B$ allele on birth weight and post-weaning production traits of Rambouillet-Booroola cross wethers. Sheep and Goat, Wool and Mohair CPR 1-6.

Wilson, T., X. Y. Wu, J. L. Juengel, I. K. Ross, J. M. Lumsden, E. A. Lord, K. G. Dodds, G. A. Walling, J. C. McEwan, A. R. O’Connell, K. P. McNatty and G. W. Montgomery. 2001. Highly prolific booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulose cells. Biol. Reprod. 64:1225-1235.