Advanced SearchSearch Tips
Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs
Kim, J.H.; Choi, B.H.; Lim, H.T.; Park, E.W.; Lee, S.H.; Seo, B.Y.; Cho, I.C.; Lee, J.G.; Oh, S.J.; Jeon, J.T.;
  PDF(new window)
This study deals with the characterization of porcine PIK3C3 and association tests with quantitative traits. PIK3C3 belongs to the class 3 PI3Ks that participate in the regulation of hepatic glucose output, glycogen synthase, and antilipolysis in typical insulin target cells such as those in the such as liver, muscle system, and fat. On the analysis of full-length mRNA sequence, the length of the PIK3C3 CDS was recorded as 2,664 bps. As well, nucleotide and amino acid identities between human and pig subjects were 92% and 99%, respectively. Five SNPs were detected over 5 exons. We performed genotyping by using a SNP C2604T on exon24 for 145 F animals (from a cross between Korean native boars and Landrace sows) by PCR-RFLP analysis with Hpy8I used to investigate the relationship between growth and fat depot traits. In the total association analysis, which doesn' consider transmission disequilibrium, the SNP showed a significant effect (p<0.05) on body weight and carcass fat at 30 weeks of age as well as a highly significant effect (p<0.01) on back fat. In an additional sib-pair analysis, C allele still showed positive and significant effects (p<0.05) on back fat thickness and carcass fat. Moreover, the effects of C allele on the means of within-family components for carcass fat and back fat were estimated as 2.76 kg and 5.07 mm, respectively. As a result, the SNP of porcine PIK3C3 discovered in this study could be utilized as a possible genetic marker for the selection of pigs that possess low levels of back fat and carcass fat at the slaughter weight.
PIK3C3;SNPs;PCR-RFLP;Sib-pair Analysis;Back Fat;Carcass Fat;
 Cited by
Identification of Functional and In silico Positional Differentially Expressed Genes in the Livers of High- and Low-marbled Hanwoo Steers,;;;;;;;;;

아세아태평양축산학회지, 2007. vol.20. 9, pp.1334-1341 crossref(new window)
Association of an SNP marker in exon 24 of a class 3 phosphoinositide-3-kinase (PIK3C3) gene with production traits in Duroc pigs, Animal Science Journal, 2010, 82, 1, 46  crossref(new windwow)
) on production traits in Duroc pigs, Animal Science Journal, 2013, 85, 3, 198  crossref(new windwow)
Abecasis, G. R., L. R. Cardon and W. O. Cookson. 2000. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66:279-292.

Abecasis, G. R., S. S. Cherny, W. O. Cookson and L. R. Cardon. 2002. Merlin- rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30:97-101.

Bidanel, J. P., D. Milan, N. Iannuccelli, Y. Amigues, M. Y. Boscher, F. Bourgeois, J. C. Caritez, J. Gruand, P. Le Roy, H. Lagant, R. Quintanilla, C. Renard, J. Gellin, L. Ollivier and C. Chevalet. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-309 crossref(new window)

Brym, P., S. Kaminski and A. Ruse. 2004. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle. J. Appl. Genet. 45:445-452.

Czech, M. P. and S. Corvera. 1999. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274:1865-1868.

Dayhoff, M. O., R. M. Schwart and B. C. Orcutt. 1978. A model of evolutionary change in proteins. In: (Ed. M. Dayhoff), Atlas of Protein Sequence and Structure, vol. 5. National Biomedical Research Foundation, Washington, DC, pp. 345-352.

de Koning, D. J., L. L. G. Janss, A. P. Rattink, P. A. M. van Oers, B. J. de Vries, M. A. M. Groenen, J. J. van der Poel, P. N. de Groot, E. W. Brascamp and J. A. M. van Arendonk. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152:1679-1690.

Gaboreanu, A. M., L. Grapes, A. M. Ramos, J. J. Kim and M. F. Rothschild. 2004. Characterization of an X-chromosome PCRRFLP marker associated with fat deposition and growth in the pig. Anim. Genet. 35:401-402.

Gerbens, F., D. J. de Koning, F. L. Harder, T. H. E. Meuwissen, L. L. G. Janss, M. A. M. Groenen, J. H. Veerkamp, J. A. M. Van Arendonk and M. F. W. te Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559.

Gerbens, F., F. J. Verburg, H. T. B. Van Moerkerk, B. Engel, W. Buist, J. H. Veerkamp and M. F. W. te Pas. 2001. Association of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 79:347-354.

Grindflek, E., J. Szyda, Z. Liu and S. Lien. 2001. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome 12:299-304.

Harlizius, B., A. P. Rattink, D. J. de Koning, M. Faivre, R. G. Joosten, J. A. M. van Arendonk and M. A. M. Groenen. 2000. The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mamm. Genome 11:800-802.

Kim, J. H., Y. S. Lee, E. W. Park, B. Y. Seo, I. C. Cho, J. G. Lee, S. J. Oh, J. H. Lee and J. T. Jeon. 2005. Assignment of the phosphoinositide-3-kinase, class 3 (PIK3C3) gene to porcine chromosome 6q22\longrightarrowq23 by somatic cell and radiation hybrid panel mapping. Cytogenet. Genome Res. 108:362A.

Kim, T. H., B. H. Choi, D. H. Yoon, E. W. Park, J. T. Jeon, J. Y. Han, S. J. Oh and I. C. Cheong. 2004. Identification of quantitative trait loci (QTL) affecting teat number in pigs. Asian-Aust. J. Anim. Sci. 17:1210-1213.

Knott, S. A., L. Marklund, C. S. Hakey, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hasson, B. Hoyhein, K. Lundstrm, M. Moller and L. Adersson. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbreed wild boar and Large White pigs. Genetics 149:1069-1080.

Li, C., J. Basarab, W. M. Snelling, B. Benkel, J. Kneeland, B. Murdoch, C. Hansen and S. S. Moore. 2004. Identification and fine mapping of quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 23 in a commercial line of Bos taurus. J. Anim. Sci. 82:967-972.

Nagamine, Y., C. S. Haley, A. Sewalem and P. M. Visscher. 2003. Quantitative trait loci variation for growth and obesity between and within lines of pigs (Sus scrofa). Genetics 164:629-635.

Ovilo, C., A. Oliver, J. L. Noguera, A. Clop, C. Barragan, L. Varona, C. Rodriguez, T. Miguel, A. Sanchez, M. Perez-Enciso and L. Silio. 2002. Test for positional candidate genes for body composition on pig chromosome 6. Genet. Sel. Evol. 34:465-479.

Rohrer, G. A. and J. W. Keele. 1998. Identification of Quantitative Trait Loci Affecting Carcass Composition in Swine: I. Fat Deposition Traits. J. Anim. Sci. 76:2247-2254.

Sato, S., Y. Oyamada, K. Atsuji, T. Nade, S. Sato, E. Kobayashi, T. Mitsuhashi, K. Nirasawa, A. Komatsuda, Y. Saito, S. Terai, T. Hayashi and Y. Sugimoto. 2003. Quantitative trait loci analysis for growth and carcass traits in a Meishan${\times}$Furoc F$_2$ resource population. J. Anim. Sci. 81:2938-2949.

Shepherd, P. R., D. J. Withers and K. Siddle. 1998. Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochem. J. 333:471-490.

Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882.

Urban, T., R. Mikolasova, J. Kuciel, M. Ernst and I. Ingr. 2002. A study of the H-FABP genotypes with fat and meat production of pigs. J. Appl. Genet. 43:505-509.

Varona, L., C. Ovilo, A. Clop, J. L. Noguera, M. Perez-Enciso, A. Coll, J. M. Folch, C. Barragan, M. A. Toro, D. Babot and A. Sanchez. 2002. QTL mapping for growth and carcass traits in an Iberian by Landrace pig intercross: additive, dominant and epistatic effects. Genet. Res. 80:145-154.

Wang, L., T. P. Yu, C. K. Tuggle, H. C. Liu and M. F. Rothschild. 1998. A directed search for quantitative trait loci on chromosome 4 and 7 in pigs. J. Anim. Sci. 76:2560-2567.

Yerle, M., G. Echard, A. Robic, A. Mairal, C. Dubut-Fontana, J. Riquet, P. Pinton, D. Milan, Y. Lahbib-Mansais and J. Gellin. 1996. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet. Cell Genet. 73:194-202.

Yerle, M., P. Pinton, A. Robic, A. Alfonso, Y. Palvadeau, C. Delcros, R. Hawken, L. Alexander, C. Beattie, L. Schook, D. Milan and J. Gellin. 1998. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet. Cell Genet. 82:182-188.

Zeng, Y. Q., G. L. Wang, C. F. Wang, S. D. Wei, Y. Wu, L. Y. Wang and H. H. L. Yang. 2005. Genetic variation of H-FABP gene and association with intramuscular fat content in Laiwu and four Western pig breeds. Asian-Aust. J. Anim. Sci. 18:13-16.