JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Principles of Physiology of Lipid Digestion
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Principles of Physiology of Lipid Digestion
Bauer, E.; Jakob, S.; Mosenthin, R.;
  PDF(new window)
 Abstract
The processing of dietary lipids can be distinguished in several sequential steps, including their emulsification, hydrolysis and micellization, before they are absorbed by the enterocytes. Emulsification of lipids starts in the stomach and is mediated by physical forces and favoured by the partial lipolysis of the dietary lipids due to the activity of gastric lipase. The process of lipid digestion continues in the duodenum where pancreatic triacylglycerol lipase (PTL) releases 50 to 70% of dietary fatty acids. Bile salts at low concentrations stimulate PTL activity, but higher concentrations inhibit PTL activity. Pancreatic triacylglycerol lipase activity is regulated by colipase, that interacts with bile salts and PTL and can release bile salt mediated PTL inhibition. Without colipase, PTL is unable to hydrolyse fatty acids from dietary triacylglycerols, resulting in fat malabsorption with severe consequences on bioavailability of dietary lipids and fat-soluble vitamins. Furthermore, carboxyl ester lipase, a pancreatic enzyme that is bile salt-stimulated and displays wide substrate reactivities, is involved in lipid digestion. The products of lipolysis are removed from the water-oil interface by incorporation into mixed micelles that are formed spontaneously by the interaction of bile salts. Monoacylglycerols and phospholipids enhance the ability of bile salts to form mixed micelles. Formation of mixed micelles is necessary to move the non-polar lipids across the unstirred water layer adjacent to the mucosal cells, thereby facilitating absorption.
 Keywords
Gastric Lipase;Pancreatic Triacylglycerol Lipase;Emulsification;Bile Salts;Colipase;Carboxyl Ester Lipase;
 Language
English
 Cited by
1.
Characterization of Fatty Acid Digestion of Beijing Fatty and Arbor Acres Chickens,;;;;

아세아태평양축산학회지, 2007. vol.20. 8, pp.1222-1228 crossref(new window)
1.
Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase, Food Research International, 2007, 40, 6, 770  crossref(new windwow)
2.
Role of Phospholipid Flux during Milk Secretion in the Mammary Gland, Journal of Mammary Gland Biology and Neoplasia, 2017  crossref(new windwow)
3.
Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review, Food Hydrocolloids, 2017, 69, 369  crossref(new windwow)
4.
Pathways of polyunsaturated fatty acid utilization: Implications for brain function in neuropsychiatric health and disease, Brain Research, 2015, 1597, 220  crossref(new windwow)
5.
Influence of Ginkgo biloba extracts and of their flavonoid glycosides fraction on the in vitro digestibility of emulsion systems, Food Hydrocolloids, 2014, 42, 196  crossref(new windwow)
6.
Changes in WPI-Stabilized Emulsion Interfacial Properties in Relation to Lipolysis and ß-Carotene Transfer During Exposure to Simulated Gastric–Duodenal Fluids of Variable Composition, Food Digestion, 2010, 1, 1-2, 14  crossref(new windwow)
7.
Multiple-layered coatings on l-glutamine solid microparticles for the retention during storage and enteric delivery during in vitro digestions, Food Hydrocolloids, 2015, 43, 584  crossref(new windwow)
8.
Effect of replacing antibiotics using multi-enzyme preparations on production performance and antioxidant activity in piglets, Journal of Integrative Agriculture, 2017, 16, 3, 640  crossref(new windwow)
9.
In vitrostudy of effects of emulsified oil on broiler feed quality, Animal Science Journal, 2013, 84, 3, 231  crossref(new windwow)
10.
Effects of milk proteins on release properties and particle morphology of β-carotene emulsions during in vitro digestion, Food Funct., 2014, 5, 11, 2940  crossref(new windwow)
11.
Impact of surfactants on the lipase digestibility of gum arabic-stabilized O/W emulsions, Food Hydrocolloids, 2013, 33, 2, 393  crossref(new windwow)
12.
Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp, Food Chemistry, 2015, 172, 685  crossref(new windwow)
13.
Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods, Expert Opinion on Drug Delivery, 2013, 10, 12, 1621  crossref(new windwow)
14.
Structural and biochemical factors affecting the digestion of protein-stabilized emulsions, Current Opinion in Colloid & Interface Science, 2013, 18, 4, 360  crossref(new windwow)
15.
Effects of cereal soluble dietary fibres on hydrolysis of p-nitrophenyl laurate by pancreatin, Food Funct., 2016, 7, 8, 3382  crossref(new windwow)
16.
Nanoemulsion-based delivery systems for nutraceuticals: Influence of carrier oil type on bioavailability of pterostilbene, Journal of Functional Foods, 2015, 13, 61  crossref(new windwow)
17.
Potential biological fate of ingested nanoemulsions: influence of particle characteristics, Food Funct., 2012, 3, 3, 202  crossref(new windwow)
18.
Heat-induced aggregation of thylakoid membranes affect their interfacial properties, Food Funct., 2015, 6, 4, 1310  crossref(new windwow)
19.
Aspects of milk-protein-stabilised emulsions, Food Hydrocolloids, 2011, 25, 8, 1938  crossref(new windwow)
20.
Comparative fat digestibility of goat, camel, cow and buffalo milk, International Dairy Journal, 2014, 35, 2, 153  crossref(new windwow)
21.
The effect of pectin on in vitro β-carotene bioaccessibility and lipid digestion in low fat emulsions, Food Hydrocolloids, 2015, 49, 73  crossref(new windwow)
22.
Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review, Food Research International, 2017  crossref(new windwow)
23.
Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions, Journal of Dairy Science, 2017, 100, 4, 2454  crossref(new windwow)
24.
Influence of anionic alginate and cationic chitosan on physicochemical stability and carotenoids bioaccessibility of soy protein isolate-stabilized emulsions, Food Research International, 2015, 77, 419  crossref(new windwow)
25.
The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers, Food Research International, 2015, 71, 9  crossref(new windwow)
26.
In vitrolipid digestion of chitinnanocrystal stabilized o/w emulsions, Food Funct., 2013, 4, 1, 121  crossref(new windwow)
27.
Selective factors governing in vitro β-carotene bioaccessibility: negative influence of low filtration cutoffs and alterations by emulsifiers and food matrices, Nutrition Research, 2014, 34, 12, 1101  crossref(new windwow)
28.
Reactivity of Free Malondialdehyde during In Vitro Simulated Gastrointestinal Digestion, Journal of Agricultural and Food Chemistry, 2017, 65, 10, 2198  crossref(new windwow)
29.
The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds, Food Funct., 2016, 7, 1, 69  crossref(new windwow)
30.
Reciprocal interacting effects of proteins and lipids during ex vivo digestion of bovine milk, International Dairy Journal, 2014, 36, 1, 6  crossref(new windwow)
31.
Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion, Food Chemistry, 2009, 114, 1, 253  crossref(new windwow)
32.
Physicochemical properties and digestibility of emulsified lipids in simulated intestinal fluids: influence of interfacial characteristics, Soft Matter, 2011, 7, 13, 6167  crossref(new windwow)
33.
In vitro digestion testing of lipid-based delivery systems: Calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products, International Journal of Pharmaceutics, 2013, 441, 1-2, 323  crossref(new windwow)
34.
Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and SimulatedIn VitroDigestion Model, Journal of Food Science, 2016, 81, 2, C317  crossref(new windwow)
35.
Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations, Trends in Food Science & Technology, 2016, 57, 59  crossref(new windwow)
36.
Impact of salt and lipid type on in vitro digestion of emulsified lipids, Food Chemistry, 2011, 126, 4, 1559  crossref(new windwow)
37.
Review of in vitro digestion models for rapid screening of emulsion-based systems, Food & Function, 2010, 1, 1, 32  crossref(new windwow)
38.
Nanotechnology for increased micronutrient bioavailability, Trends in Food Science & Technology, 2014, 40, 2, 168  crossref(new windwow)
39.
Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals, Food & Function, 2014, 5, 7, 1320  crossref(new windwow)
40.
Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model, Food Hydrocolloids, 2009, 23, 6, 1563  crossref(new windwow)
41.
Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules, Advances in Colloid and Interface Science, 2016, 237, 52  crossref(new windwow)
42.
In vitroβ-Carotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methyl-Esterification, Journal of Food Science, 2016, 81, 10, C2327  crossref(new windwow)
43.
Effects of Chitosan Addition on In Vitro Digestibility of Protein-Coated Lipid Droplets, Journal of Dispersion Science and Technology, 2015, 36, 11, 1556  crossref(new windwow)
44.
Effect of Gum Arabic, Gum Ghatti and Sugar Beet Pectin as Interfacial Layer on Lipid Digestibility in Oil-in-Water Emulsions, Food Biophysics, 2016, 11, 3, 292  crossref(new windwow)
45.
Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method, Food Chemistry, 2011, 126, 2, 498  crossref(new windwow)
46.
Effect of free thymol on differential gene expression in gastric mucosa of the young pig, animal, 2014, 8, 05, 786  crossref(new windwow)
47.
Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility, Food Hydrocolloids, 2016, 58, 160  crossref(new windwow)
48.
Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads, Food Hydrocolloids, 2011, 25, 1, 122  crossref(new windwow)
49.
Designing Food Structure to Control Stability, Digestion, Release and Absorption of Lipophilic Food Components, Food Biophysics, 2008, 3, 2, 219  crossref(new windwow)
50.
Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets, Food Funct., 2016, 7, 1, 93  crossref(new windwow)
51.
Delivery of Lipophilic Bioactives: Assembly, Disassembly, and Reassembly of Lipid Nanoparticles, Annual Review of Food Science and Technology, 2014, 5, 1, 53  crossref(new windwow)
52.
The influence of emulsion structure and stability on lipid digestion, Current Opinion in Colloid & Interface Science, 2010, 15, 1-2, 90  crossref(new windwow)
53.
Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment, Food & Function, 2012, 3, 7, 724  crossref(new windwow)
54.
In vitro digestion of curcuminoid-loaded lipid nanoparticles, Journal of Nanoparticle Research, 2012, 14, 9  crossref(new windwow)
55.
Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis, Food Funct., 2016, 7, 1, 326  crossref(new windwow)
56.
Dietary exposures for the safety assessment of seven emulsifiers commonly added to foods in the United States and implications for safety, Food Additives & Contaminants: Part A, 2017, 1  crossref(new windwow)
57.
Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats, Scientific Reports, 2017, 7, 1  crossref(new windwow)
58.
Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model, International Dairy Journal, 2010, 20, 9, 589  crossref(new windwow)
59.
Influence of Physiological Gastrointestinal Parameters on the Bioaccessibility of Mercury and Selenium from Swordfish, Journal of Agricultural and Food Chemistry, 2016, 64, 3, 690  crossref(new windwow)
60.
Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components, Advances in Colloid and Interface Science, 2010, 159, 2, 213  crossref(new windwow)
61.
Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size, Food Chemistry, 2017, 229, 653  crossref(new windwow)
62.
Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models, Colloids and Surfaces B: Biointerfaces, 2011, 83, 2, 321  crossref(new windwow)
63.
Influence of whey protein–beet pectin conjugate on the properties and digestibility of β-carotene emulsion during in vitro digestion, Food Chemistry, 2014, 156, 374  crossref(new windwow)
64.
Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis, Food Chemistry, 2015, 185, 405  crossref(new windwow)
65.
Total phenolic content and antioxidant properties of hard low-fat cheese fortified with catechin as affected by in vitro gastrointestinal digestion, LWT - Food Science and Technology, 2015, 62, 1, 393  crossref(new windwow)
66.
Functional food microstructures for macronutrient release and delivery, Food Funct., 2015, 6, 3, 663  crossref(new windwow)
67.
Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model, Food Hydrocolloids, 2010, 24, 2-3, 142  crossref(new windwow)
68.
The role of bile salts in digestion, Advances in Colloid and Interface Science, 2011, 165, 1, 36  crossref(new windwow)
 References
1.
Abrams, C. K., M. Hamosh, S. K. Dutta, V. S. Hubbard and P. Hamosh. 1987. Role of non pancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 92:125-129.

2.
Alemi, B., M. Hamosh, J. W. Scanlon, C. Salzman-Mann and P. Hamosh. 1981. Fat digestion in very low birth-weight infants: effect of addition of human milk to low birth weight formula. Pediatrics 68:484-489.

3.
Alvaro, D., A. Cantafora, A. F. Attili, S. Ginanni Corradini, C. De Luca, G. Minervini, A. Di Biase and M. Angelico. 1986. Relationships between bile salts hydrophylicity and phospholipid composition in bile of various animal species. Comp. Biochem. Physiol. Vol. 83B:551-554.

4.
Andersson, L., F. Carrière, M. E. Lowe, A. Nilsson and R. Verger. 1996. Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids, Biochim. Biophys. Acta 1302:236-240.

5.
Armand, M., P. Borel, P. Ythier, G. Dutot, C. Melin, M. Senft, H. Lafont and D. Lairon. 1992. Effects of droplet size, triacylglycerol composition, and calcium on the hydrolysis of complex emulsions by pancreatic lipase: an in vitro study. J. Nutr. Biochem. 3:333-341.

6.
Armand, M., P. Borel, C. Dubois, M. Senft, J. Peyrot, J. Salducci, H. Lafont and D. Lairon. 1994. Characterization of emulsions and lipolysis of dietary lipids in the human stomach. Am. J. Physiol. 266:G372-381.

7.
Armand, M., P. Borel, B. Pasquier, C. Dubois, M. Senft, M. André, J. Peyrot, J. Salducci and D. Lairon. 1996. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am. J. Physiol. 271:G172-183.

8.
Armand, M., B. Pasquier, M. André, P. Borel, M. Senft, J. Peyrot, J. Salducci, H. Portugal, V. Jaussan and D. Lairon. 1999. Digestion and absorption of 2 fat emulsions with different droplet size in the human digestive tract. Am. J. Clin. Nutr. 70:1096-1106.

9.
Bernbäck, S., L. Bläckberg and O. Hernell. 1989. Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim. Biophys. Acta 1001:286-293.

10.
Bernbäck, S., L. Bläckberg and O. Hernell. 1990. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase and bile salt-stimulated lipase. J. Clin. Invest. 85:1221-1226.

11.
Bläckberg, L., O. Hernell and Olivecrona. 1981. Hydrolysis of human milk fat globules by pancreatic lipase: role of colipase, phospholipase A2, and bile salts. J. Clin. Invest. 67:1748-1752.

12.
Bodmer, M. W., S. Angal, G. T. Yarranton, T. J. R. Harris, A. Lyons, D. J. King, G. Piéroni, C. Rivière, R. Verger and P. A. Lowe. 1987. Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim. Biophys. Acta 909:237-244.

13.
Borel, P., M. Armand, P. Ythier, G. Dutot, C. Melin, M. Senft, H. Lafont and D. Lairon. 1994. Hydrolysis of emulsions with different triacylglycerol and droplet sizes by gastric lipase in vitro, effect on pancreatic lipase activity. J. Nutr. Biochem. 5:124-133.

14.
Borel, P., P. Grolier, M. Armand, A. Partier, H. Lafont, D. Lairon and V. Azais-Braesco. 1996. Carotenoids in biological emulsions: solubility, surface-to-core distribution, and release from lipid droplets. J. Lipid Res. 37: 250-261.

15.
Borgström, B. 1974. Fat digestion and absorption. In: Biomembranes, Vol. 4B (Ed. D. H. Smyth). Plenum Press, London and New York, pp. 555-620.

16.
Borgström, B. 1975. On the interaction between pancreatic lipase and colipase and the substrate and the importance of bile salts. J. Lipid Res. 16:411-417.

17.
Borgström, B. 1980. Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat. In vitro experiments with the porcine enzymes. Gastroenterology 78:954-962.

18.
Borgström, B., A. Dahlquist, G. Lundh and J. Sjövall. 1957. Studies of intestinal digestion and absorption in the human. J. Clin. Invest. 36:1521-1536.

19.
Borgström, B. and C. Erlanson. 1971. Pancreatic juice colipase: physiological importance. Biochim. Biophys. Acta 242:509-513.

20.
Borgström, B. and C. Erlanson. 1973. Pancreatic lipase and colipase. Interactions and effects of bile salts and other detergents. Eur. J. Biochem. 37:60-68.

21.
Borgström, B. and C. Erlanson-Albertsson. 1984. Pancreatic colipase. In: Lipases (Ed. B. Borgström and H. L. Brockman). Elseviers Science Publishers, Amsterdam, The Netherlands, pp. 151-183.

22.
Borgström, B. and H. Hildebrand. 1975. Lipase and co-lipase activities of human small intestinal contents after a liquid test meal. Scand. J. Gastroenterol. 10:585-591.

23.
Bosc-Bierne, I., J. Rathelot, C. Perrot and L. Sarda. 1984. Studies on chicken pancreatic lipase and colipase. Biochim. Biophys. Acta 794:65-71.

24.
Brindley, D. N. 1974. The intracellular phase of fat absorption. In: Biomembranes, Vol. 4B (Ed. D. H. Smyth). Plenum Press, London and New York, pp. 621-671.

25.
Brindley, D. N. 1984. Digestion, absorption and transport of fats: general principles. In: Fats in Animal Nutrition (Ed. J. Wiseman). Butterworths, London, pp. 85-103.

26.
Brockerhoff, H. and R. G. Jensen. 1974. Lipolytic Enzymes. Academic Press, New York, pp. 34-90.

27.
Brockman, H. L. 1984. General features of lipolysis: reaction scheme, interfacial structure and experimental approaches. In: Lipases (Ed. B. Borgström and H. L. Brockman). Elsevier Science Publishers B.V., Amsterdam, pp. 3-46.

28.
Brockman, H. L. 2000. Kinetic behaviour of the pancreatic lipasecolipase-lipid system. Biochimie 82:987-995.

29.
Carey, M. C. and O. Hernell. 1992. Digestion and absorption of fat. Semin. Gastrointest. Dis. 3:189-208.

30.
Carey, M. C., D. M. Small and C. M. Bliss. 1983. Lipid digestion and absorption. Annu. Rev. Physiol. 45:651-677.

31.
Carrière, F., J. A. Barrowman, R. Verger and R. Laugier. 1993. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876-888.

32.
Carrière, F., Y. Gargouri, H. Moreau, S. Ransac, E. Rogalska and R. Verger. 1994. Lipases: Their Structure, Biochemistry, and Application (Ed. P. Woolley and S. B. Petersen). Cambridge University Press, Cambridge England, pp. 181-205.

33.
Chen, Q., B. Sternby and A. Nilsson. 1989. Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase. Biochim. Biophys. Acta 1004:372-385.

34.
Chen, Q., L. Bläckberg, A. Nilsson, B. Sternby and O. Hernell. 1994. Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile salt-stimulated lipase. Biochim. Biophys. Acta 1210:239-243.

35.
Clark, S. B., B. Brause and P. R. Holt. 1969. Lipolysis and absorption of fat in the rat stomach. Gastroenterology 56:214-222.

36.
Cohen, M., R. G. H. Morgan and A. F. Hofmann. 1971. Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60(1):1-15.

37.
Crandall, W. V. and M. E. Lowe. 2001. Colipase residues Glu$^64$ and Arg$^65$ are essential for normal lipase-mediated fat digestion in the presence of bile salt micelles. J. Biol. Chem. 276:12505-12512.

38.
D’Agostino, D., R. A. Cordle, J. Kullman, C. Erlanson-Albertsson, L. J. Muglia and M. E. Lowe. 2002. Decreased postnatal survival and altered body weight regulation in procolipasedeficient mice. J. Biol. Chem. 277:7170-7177.

39.
Demarne, Y., T. Corring, A. Pihet and E. Sacquet. 1982. Fat absorption in germ-free and conventional rats artificially deprived of bile secretion. Gut 23:49-57.

40.
DeNigris, S. J., M. Hamosh, D. K. Kasbekar, T. C. Lee and P. Hamosh. 1988. Lingual and gastric lipases: species differences in the origin of pre-pancreatic digestive lipases and in the localization of gastric lipase. Biochim. Biophys. Acta 959:38-45.

41.
Dietschy, J. M. 1978. General principles governing movement of lipids across biological membranes. In: Disturbances in Lipid Lipoprotein Metabolism (Ed. J. M. Dietschy, A. M. Gotto Jr. and J. A. Ontko). Bethesda, American Physiological Society, Washington. pp. 1-28.

42.
Drackley, J. D. 2000. Lipid metabolism. In: Farm Animal Metabolism and Nutrition (Ed. J. P. F. D'Mello). CAB International publishing, UK, pp. 97-119.

43.
Egloff, M. P., L. Sarda, R. Verger, C. Cambillau and H. Van Tilbeurgh. 1995. Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase. Protein Sci. 4:44-57.

44.
Engstrom, J. F., J. J. Rybak, M. Duber and N. J. Greenberger. 1968. Evidence for a lipase system in canine gastric juice. Am. J. Med. Sci. 256:346-351.

45.
Entressangles, B. and P. Desnuelle. 1968. Action of pancreatic lipase on aggregated glyceride molecules in an isotropic system. Biochim. Biophys. Acta 159:285-295.

46.
Erlanson-Albertsson, C., B. Weström, S. Pierzynowski, S. Karlsson and B. Ahren. 1991. Pancreatic procolipase activation peptide-enterostatin-inhibits pancreatic enzyme secretion in the pig. Pancreas 6:619-624.

47.
Erlanson-Albertsson, C. 1992. Enterostatin: the pancreatic procolipase activation peptide - a signal for regulation of fat intake. Nutr. Rev. 50:307-310.

48.
Fält, H., O. Hernell and L. Bläckberg. 2002. Does bile saltstimulated lipase affect cholesterol uptake when bound to rat intestinal mucosa in vitro? Pediatr. Res. 52:509-515.

49.
Fillery-Travis, A. J., L. H. Foster and M. M. Robins. 1995. Interactions between two physiological surfactants: L-$\alpha$- phosphatidylcholine and sodium taurocholate. Biophys. Chem. 54:253-260.

50.
Friedman, H. I. and B. Nylund. 1980. Intestinal fat digestion, absorption and transport. A review. Am. J. Clin. Nutr. 33:1108-1139.

51.
Fukunaga, T., M. Nagahama, K. Hatsuzawa, K. Tani, A. Yamamoto and M. Tagaya. 2000. Implication of sphingolipid metabolism in the stability of the Golgi apparatus. J. Cell Sci. 113:3299-3307.

52.
Gaull, G. E. and C. E. Wright. 1987. Taurine conjugation of bile acids protects human cells in culture. Adv. Exp. Med. Biol. 217:61-67.

53.
Gargouri, Y., G. Pieroni, C. Rivière, J. F. Saunière, P. A. Lowe, L. Sarda and R. Verger. 1986a. Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology 91:919-925.

54.
Gargouri, Y., G. Pieroni, C. Rivière, P. A. Lowe, J. F. Saunière, L. Sarda and R. Verger. 1986b. Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim. Biophys. Acta 879:419-423.

55.
Gargouri, Y., H. Moreau and R. Verger. 1989. Gastric lipases: biochemical and physiological studies. Biochim. Biophys. Acta 1006:255-271.

56.
Hamosh, M. 1990. Lingual and gastric lipases: their role in fat digestion. CRC Press, Boca Raton, Fl., pp. 1-239.

57.
Hamosh, M. 1995. Lipid metabolism in pediatric nutrition. Pediatr. Clin. North Am. 42:839-859

58.
Hamosh, M., H. Klaeveman, R. O. Wolf and R. O. Scow. 1975. Pharyngeal lipase and digestion of dietary triacylglycerol in man. J. Clin. Invest. 55:908-913.

59.
Harrison, E. H. 1988. Bile salt-dependent, neutral cholesteryl ester hydrolase of rat liver: possible relationship with pancreatic cholesteryl ester hydrolase. Biochim. Biophys. Acta 963:28-34.

60.
Heaton, K. W. 1985. Bile salts. In: Liver and Biliary Disease: Pathophysiology, Diagnosis, Management (Ed. R. Wright, G. H. Millward-Sadler, K. G. M. M. Alberti and S. Karran). BaillèreTindall, W.D. Saunders Co., Philadelphia, p. 277.

61.
Helander, H. F. and T. Olivecrona. 1970. Lipolysis and lipid absorption in the stomach of the suckling rat. Gastroenterology 59:22-35.

62.
Hermoso, J., D. Pignol, S. Penel, M. Roth, C. Chapus and J. C. Fontecilla-Camps. 1997. Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. EMBO J. 16:5531-5536.

63.
Hernell, O., J. E. Staggers and M. C. Carey. 1990. Physicalchemical behaviour of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry 29:2041-2056.

64.
Hildebrand, H., B. Borgström, A. Békássy, C. Erlansson-Albertsson and A. Helin. 1982. Isolated colipase deficiency in two brothers. Gut 23:243-246.

65.
Hofmann, A. F. and D. M. Small. 1967. Detergent properties of bile salts: correlation with physiological function. Annu. Rev. Med. 18:333-376.

66.
Holt, P. R. 1971. Fats and bile salts. J. Am. Diet Assoc. 60:491-498.

67.
Howles, P. N., C. P. Carter and D. Y. Hui. 1996. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J. Biol. Chem. 271:7196-7202.

68.
Howles, P., B. Wagner and L. Davis. 1998. Bile salt stimulated lipase is required for proper digestion and absorption of milk triacylglycerols in neonatal mice. FASEB J. 12:A851 (Abstr.).

69.
Hui, D. Y. 1996. Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues. Biochim. Biophys. Acta 1303:1-14.

70.
Hui, D. Y. and P. N. Howles. 2002. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43:2017-2030.

71.
Jensen, M. S., S. K. Jensen and K. Jakobsen. 1997. Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J. Anim. Sci. 75:437-445.

72.
Kellow, J. E., T. J. Borody, S. F. Philips, R. L. Tucker and A. C. Hadda. 1986. Human interdigestive motility: variations in patterns from oesophagus to colon. Gastroenterology 91:386-395.

73.
Kirby, R. J., S. Zheng, P. Tso, P. N. Howles and D. Y. Hui. 2002. Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine. J. Biol. Chem. 277:4101-4109.

74.
Krogdahl, Å. 1985. Digestion and absorption of lipids in poultry. J. Nutr. 115:675-685.

75.
Lapey, A., J. Kattwinkel, P. A. Di Sant Agnese and L. Laster. 1974. Steatorrhea and azotorrhea and their relation to growth and nutrition in adolescents and young adults with cystic fibrosis. J. Pediatr. 84:328-334.

76.
Laws, B. M. and J. H. Moore. 1963. The lipase and esterase activities of the pancreas and small intestine of the chick. Biochem. J. 87:632-638.

77.
Lee, P. C. and E. Lebenthal. 1993. Prenatal and postnatal development of the human exocrine pancreas. In: The Pancreas: Biology, Pathobiology, and Disease (Ed. V. Liang and W. Go). Raven Press, New York, pp. 57-173.

78.
Levy, E., R. Goldstein, S. Freier and E. Shafrir. 1982. Gastric lipase in the newborn rat. Pediatr. Res. 16:69-74.

79.
Li, F. and D. Y. Hui. 1997. Modified low density lipoprotein enhances the secretion of bile salt-stimulated cholesterol esterase by human monocyte-macrophages. Species-species difference in macrophage cholesterol ester hydrolase. J. Biol. Chem. 272:28666-28671.

80.
Li, F. and D. Y. Hui. 1998. Synthesis and secretion of the pancreatic-type carboxyl ester lipase by human endothelial cells. Biochem. J. 329:675-679.

81.
Liang, Y., R. Medhekar, H. L. Brockman, D. M. Quinn and D. Y. Hui. 2000. Importance of arginines 63 and 423 in modulating the bile salt-dependent and bile salt-independent hydrolytic activities of rat carboxyl ester lipase. J. Biol. Chem. 275:24040-24046.

82.
Liao, T. H., P. Hamosh and M. Hamosh. 1983. Gastric lipolysis in the developing rat-ontogeny of the lipases active in the stomach. Biochim. Biophys. Acta 754:1-9.

83.
Lindstrom, M., B. Sternby and B. Borgström. 1988. Concerted action of human carboxyl ester lipase and pancreatic lipase during digestion in vitro: importance of the physicochemical state of the substrate. Biochim. Biophys. Acta 959:178-184.

84.
Linthorst, J. M., S. Bennett Clark and P. R. Holt. 1977. Triacylglycerol emulsification by amphipaths present in the intestinal lumen during digestion of fat. J. Colloid Interface Sci. 60:1-10.

85.
Lowe, M. E. 1994. Pancreatic Triacylglycerol lipase and colipase: insights into dietary fat digestion. Gastroenterology 107:1524-1536.

86.
Lowe, M. E. 2002. The triacylglycerol lipases of the pancreas. J. Lipid Res. 43:2007-2016.

87.
Malagelada, J. R. and F. Azpiroz. 1989. Determinants of Gastric Emptying and Transit in the Small Intestine. Oxford Univ. Press, New York, pp. 909-937.

88.
Martins, I. J., B. C. Mortimer, J. Miller and T. G. Redgrave. 1996. Effects of particle size and number on the plasma clearance of chylomicrons and remnants. J. Lipid Res. 37:2696-2705.

89.
Mattson, F. H. and R. A. Volpenhein. 1972. Rate and extent of absorption of the fatty acids of fully esterified glycerol, erythritol, and sucrose as measured in thoracic duct cannulated rats. J. Nutr. 102:1177-1180.

90.
Maylié, M. F., M. Charles, C. Gache and P. Desnuelle. 1971. Isolation and partial identification of a pancreatic colipase. Biochim. Biophys. Acta 229:286-289.

91.
Maynard, L. A., J. K. Loosli, H. F. Hintz and R. G. Warner. 1979. Animal Nutrition (7th ed.) McGraw-Hill Book Co., New York, pp. 199-200.

92.
McMurry, J. and M. E. Castellion. 2002. Fundamentals of General, Organic, and Biological Chemistry. Prentice Hall, New York.

93.
Miled, N., S. Canaan, L. Dupuis, A. Roussel, M. Rivière, F. Carrière, A. De Caro, C. Cambillau and R. Verger. 2000. Digestive lipases: from three-dimensional structure to physiology. Biochimie 82:973-986.

94.
Miller, K. W. and D. M. Small. 1982. The phase behaviour of triolein, cholesterol and lecithin emulsions. J. Colloid Interface Sci. 89:466-478.

95.
Momsen, W. E. and H. L. Brockman. 1976. Effects of colipase and taurodeoxycholate on the catalytic and physical properties of pancreatic lipase B at an oil-water interface. J. Biol. Chem. 251:378-383.

96.
Moreau, H., Y. Gargouri, D. Lecat, J. L. Junien and R. Verger. 1988a. Screening of preduodenal lipases in several mammals. Biochim. Biophys. Acta 959:247-252.

97.
Moreau, H., R. Laugier, Y. Gargouri, F. Ferrato and R. Verger. 1988b. Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology 95:1221-1226.

98.
Moreau, H., A. Bernadac, Y. Gargouri, F. Benkouka, R. Laugier and R. Verger. 1989. Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry 91:419-423.

99.
Mu, H. and C.-E. Hoy. 2004. The digestion of dietary triacylglycerols. Prog. Lipid Res. 43:105-133.