Advanced SearchSearch Tips
Antioxidative Activities of Kefir
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Antioxidative Activities of Kefir
Liu, Je-Ruei; Lin, Yuh-Yih; Chen, Ming-Ju; Chen, Li-Ju; Lin, Chin-Wen;
  PDF(new window)
This study aims to evaluate the antioxidative activities of cow-milk kefir and goat-milk kefir. Antioxidative mechanisms, including radical-scavenging effects, ferrous-ion chelating ability, reducing power and antioxidant activity, were investigated herein. Kefirs demonstrated significantly greater scavenging effects upon 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide radicals, an inhibition effect upon linoleic-acid peroxidation, and more substantial reducing power, but reduced glutathione peroxidase (GSH-Px) activity than was the case for milks. There was no significant difference between milks and kefirs as regards ferrous-ion chelating ability and superoxide dismutase (SOD) activity. These findings have demonstrated that kefirs possess antioxidant activity, thereby suggesting that kefirs are potential candidates for the role of useful natural antioxidant supplements for the human diet.
Kefir;Antioxidative Activity;Free Radical;
 Cited by
Antioxidative Activities of Hydrolysates from Duck Egg White Using Enzymatic Hydrolysis,;;;;

아세아태평양축산학회지, 2009. vol.22. 11, pp.1587-1593 crossref(new window)
플레인 요구르트와 소이 요구르트의 미생물학적, 물리화학적 및 항산화 활성,임성미;

한국미생물학회지, 2013. vol.49. 4, pp.403-414 crossref(new window)
Antidiabetic Potential of Kefir Combination from Goat Milk and Soy Milk in Rats Induced with Streptozotocin-Nicotinamide,;;;

한국축산식품학회지, 2015. vol.35. 6, pp.847-858 crossref(new window)
Antidiabetic Potential of Kefir Combination from Goat Milk and Soy Milk in Rats Induced with Streptozotocin-Nicotinamide, Korean Journal for Food Science of Animal Resources, 2015, 35, 6, 847  crossref(new windwow)
Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates, Peptides, 2013, 39, 157  crossref(new windwow)
A change in antioxidative capacity as a measure of onset to oxidation in pasteurized milk, International Dairy Journal, 2008, 18, 5, 520  crossref(new windwow)
Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase, Peptides, 2012, 37, 2, 263  crossref(new windwow)
Microbiological, Physicochemical, and Antioxidant Properties of Plain Yogurt and Soy Yogurt, The Korean Journal of Microbiology, 2013, 49, 4, 403  crossref(new windwow)
Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides, Journal of Functional Foods, 2013, 5, 4, 1909  crossref(new windwow)
The Influence of Goat Milk and Soybean Milk Kefir On IL-6 and Crp Levels in Diabetic Rats, Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2015, 22, 3  crossref(new windwow)
Kefir: una comunidad simbiótica de bacterias y levaduras con propiedades saludables, Revista Iberoamericana de Micología, 2006, 23, 2, 67  crossref(new windwow)
Gastroprotective effect of kefir on ulcer induced in irradiated rats, Journal of Photochemistry and Photobiology B: Biology, 2015, 144, 85  crossref(new windwow)
Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides, Food & Function, 2013, 4, 12, 1843  crossref(new windwow)
Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation, International Dairy Journal, 2015, 43, 15  crossref(new windwow)
Ahotupa, M., M. Saxelin and R. Korpela. 1996. Antioxidative properties of Lactobacillus GG. Nutr. Today 31:51S-52S.

Allen, J. C. and W. L. Wrieden. 1982. Influence of milk proteins on lipid oxidation in aqueous emulsion. I. Casein, whey protein and $\alpha$-lactalbumin. J. Dairy Res. 49:239-248.

Angulo, L., E. Lopez and C. Lema. 1993. Microflora present in kefir grains of the Galician region (north-west of Spain). J. Dairy Res. 60:263-267.

Asada, K. 1976. Occurrence of superoxide dismutase in bovine milk. Agr. Biol. Chem. 40:1659-1660.

Burk, R. F. 1997. Selenium-dependent glutathione peroxidases. In Comprehensive Toxicology (Ed. F. P. Guengerich). Pergamon, London, pp. 229-242.

Decker, E. A. and B. Welch. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38:674-677.

Fiat, A. M., D. Migliore-Samour, P. Jolles, L. Drouet, C. B. Sollier and J. Caen. 1993. Biologically active peptides from milk with emphasis on two examples concerning antithrombotic and immunomodulating activities. J. Dairy Sci. 76:301-310.

Frenkel, K. 1992. Carcinogen-mediated oxidant formation and DNA damage. Pharmacol. Ther. 53:127-166.

Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87:175-188.

Granelli, K., L. Bjorck and L. A. Appelqvist. 1995. The variation of superoxide dismutase (SOD) and xanthine oxidase (XO) activities in milk using an improved method to quantitate SOD activity. J. Sci. Food Agric. 67:85-91.

Gutteridge, J. M. C., S. K. Paterson, A. W. Segal and B. Halliwell. 1981. Inhibition of lipid peroxidition by the iron-binding protein lactoferrin. Biochem. J. 199:259-261.

Halliwell, B. and J. M. C. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1-4.

Halliwell, B. and J. M. C. Gutteridgu. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186:1-85.

Halliwell, B. 1994. Free radicals and antioxidants: a personal view. Nutri. Rev. 52:253-265.

Ham, J. S., J. S. Kim, K. H. Hoog, J. G. Kim, S. G. Jeong, H. S. Dhae, J. N. Ahn, D. K. Kang and H. U. Kim. 2003. Inhibitory activity of lactic acid bacteria against hazardous microbes. Asian-Aust. J. Anim. Sci. 16:1550-1554.

Hojo, Y. 1982. Selenium concentration and glutathione peroxidase activity in cow’s milk. Biol. Trace Elem. Res. 4:233-239.

Hoolbrook, J. J. and C. L. Hicks. 1918. Variation of superoxide dismutase in bovine milk. J. Dairy Sci. 61:1072-1077.

La Riviere, J. W. M., P. Kooiman and K. Schmidt. 1967. Kefiran, a noval polysaccharide produced in the kefir grain by Lactobacillus brevis. Arch. Microbiol. 59:269-278.

Lahov, E. and W. Regelson. 1996. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem. Toxicol. 34:131-145.

LeBlanc, L. G., C. Matar, J. C. Valdez, J. Leblanc and G. Perdigon. 2002. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J. Dairy Sci. 85:2733-2742.

Lin, C. W., C. L. Chen and J. R. Liu. 1999. Identification and characterisation of lactic acid bacteria and yeasts isolated from kefir grains in Taiwan. Aust. J. Dairy Technol. 54:14-18.

Lin, M. Y. and C. L. Yen. 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47:1460-1466.

Lin, M. Y. and F. J. Chang. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ACTT 4356. Digest. Dis. Sci. 45:1617-1622.

Lindmark-Mansson, H. and B. Akesson. 2000. Antioxidative factors in milk. Br. J. Nutr. 84:S103-S110.

Liu, J. R., S. Y. Wang, Y. Y. Lin and C. W. Lin. 2002. Antitumor activity of milk-kefir and soymilk-kefir in tumor-bearing mice. Nutri. Cancer 44:182-187.

Marshall, V. M., W. M. Cole and B. E. Brooker. 1984. Observations on the structure of kefir grains and the distribution of the microflora. J. Appl. Bacteriol. 57:491-497.

Marshall, V. M. and W. M. Cole. 1985. Methods for making kefir and fermented milks based on kefir. J. Dairy Res. 52:451-452.

Meucci, E., A. Mordente and G. E. Martorana. 1991. Metalcatalyzed oxidation of human serum albumin: conformational and functional changes. J. Biol. Chem. 266:4692-4699.

Montgomery, D. C. 1999. Experiments with a single factor: the analysis of variance. In Design and Analysis of Experiments (Ed. D. C. Montgomery). John Wiley and Sons, New York, pp. 75-77.

Nishino, T., H. Shibahara-Sone, H. Kikuchi-Hayakawa and F. Ishikawa. 2000. Transit of radical scavenging activity of milk products prepared by Maillard reaction and Lactobacillus casei strain Shirota fermentation through the hamster instestine. J. Dairy Sci. 83:915-922.

Oyaizu, M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucose-amine. Jpn. J. Nutri. 44:307-315.

Pacifici, R. E. and K. J. Davies. 1991. Protein, lipid and DNA repair systems in oxidative stress: the free radical theory of aging revisited. Gerontology 37:166-180.

Pena-Ramos, E. A. and Y. L. Xiong. 2001. Antioxidative activity of whey protein hydrolysates in a liposomal system. J. Dairy Sci. 84:2577-2583.

Pryor, W. A. 1991. The antioxidant nutrients and disease prevention-What do we know and what do we need to find out? Am. J. Clin. Nutr. 53:S391-S393.

Robak, J. and I. R. Gryglewski. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharma. 37:837-841.

Sanders, M. E. 1993. Summary of conclusions from a consensus panel of experts on health attributes of lactic cultures: significance to fluid milk products containing cultures. J. Dairy Sci. 76:1819-1828.

Sanders, J. W., K. J. Leehouts, A. J. Haandrikmam, G. Venema and J. Kok. 1995. Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177:5254-5260.

Shimada, K., K. Fujikawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945-948.

Simic, M. G. 1988. Mechanisms of inhibition of free-radical processed in mutagenesis and carcinogensis. Mutat. Res. 202:377-386.

Statistical Analysis System Institute. 1998. SAS User’s Guide: Statistics. SAS Institute Inc., Cary, NC.

Suetsuna, K., H. Ukeda and H. Ochi. 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11:128-131.

Tong, L. M., S. Sasaki, D. Julian McClements and E. A. Decker. 2000. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem. 48:1473-1478.

Wong, P. Y. Y. and D. D. Kitts. 2003. Chemistry of buttermilk solid antioxidant activity. J. Dairy Sci. 86:1541-1547.

Yamaguchi, T., H. Takamura, T. Matoba and J. Terao. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1,-diphenyl-2-picrylhydrazyl. Biosci. Biotechno.l Biochem. 62:1201-1204.

Ye, X. Y. and T. B. Ng. 2000. Purification and characterization of glycolactin, a novel glycoprotein from bovine milk. Life Sci. 66:1177-1186.

Yen, G. C., P. D. Duh and C. Y. Chuang. 2000. Antioxidant activity of anthraquinones and anthrone. Food Chem. 70:437-441.