Advanced SearchSearch Tips
Correlations of Genic Heterozygosity and Variances with Heterosis in a Pig Population Revealed by Microsatellite DNA Marker
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Correlations of Genic Heterozygosity and Variances with Heterosis in a Pig Population Revealed by Microsatellite DNA Marker
Zhang, J.H.; Xiong, Y.Z.; Deng, C.Y.;
  PDF(new window)
Correlation of microsatellite heterozygosity with performance or heterosis was reported in wild animal populations and domestic animal populations, but the correlation with heterosis in a crossbreeding F pig population remained uncertain. To explore this, we had random selected and mated YorkshireMeishan (F, n = 82) and their reciprocal (G, n = 47) to F, and used the two straightbreds as control groups (Yorkshire = 34, Meishan = 55), and observed the heterosis of birth weight (BWT), average daily gain (ADG) and feed and meat ratio (FMR). Two Kinds of measurement-individual heterozygosity (IH) and individual mean d (lg value, ID) were used as index of heterozygosity and variance from 39 microsatellite marker loci to perform univariate regression analysis against heterosis. We detected significant correlation of IH with BWT in all of F (F+G) and in F. We observed significant correlation of ID with ADG in all of F (F+G), and with FMR in all of F (F+G) and in F. There was significant maternal effect on heterosis, which was indicated by significant difference of means and distribution of heterosis between F and G. This difference was consistent with distributions of IH and ID, and with difference of means in F and G. From this study, it would be suggested that the two kinds of genetic index could be used to explore the genetic basis of heterosis in crossbreeding populations but could not determine which is better.
Pig;Heterosis;Microsatellite;Individual Heterozygosity;Individual Mean d;
 Cited by
Study on polymorphisms of microsatellite DNA of six Chinese indigenous sheep and goat breeds, Frontiers of Agriculture in China, 2007, 1, 4, 472  crossref(new windwow)
Quantitative trait loci for carcass traits on pig chromosomes 4, 6, 7, 8 and 13, Journal of Applied Genetics, 2007, 48, 4, 363  crossref(new windwow)
) Fawns, Mammal Study, 2012, 37, 1, 11  crossref(new windwow)
Behl, R., R. Kaul, N. Sheoran, J. Behl, M. S. Tantia and P. K. Vijh. 2002. Genetic identity of two indian pig types using microsatellite markers. Anim. Gene. 33:158-159.

Bidanel, J. P. and M. Rothschild. 2002. Current status of quantitative trait locus mapping in pigs. Pig News and Information 23:39N-54N.

Blanchfield, P. J., M. S. Ridgway and C. C. Wilson. 2003. Breeding success of male brook trout (Salvelinus fontinalis) in the wild. Molecular Ecology 12:2417-2428.

Bohn, M. Frisch. 2003. Genetic distance based on simple sequence repeats and heterosis in tropical maize population. Crop Sci. 43:1275-1282.

Bruce, A. B. 1910. The mendelian theory of heredity and augmentation of vigor. Sci. 32:627-628.

Coltman, D. W., W. D. Bowen and J. M. Wright. 1998. Birth weight and neonatal survival of harour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. Lond B Biol. Sci. 265:803-809.

Coulson, T. N., J. M. Pemberton, S. D. Albon, M. Beaumont, T. C. Marshall, J. Slate, F. E. Guinness and T. H. Clutton-Brock. 1998. Microsatellites reveal heterosis in red deer. Proc. R. Soc. Lond. B 265:489-495.

Curik, I., P. Zechner, J. Sölkner, R. Achmann, I. Bodo, P. Dovè, T. Kavar, E. Marti and G. Brem. 2003. Inbreeding, microsatellite heterozygosity and morphological traits in lipizzan horses. J. Hered. 94:125-132.

Dieringer, D. and C. Schlötterer. 2003. Microsatellite analyzer (MSA) - a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 3:167-169.

Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. Fourth edition, Longman Group Ltd. Press, p. 259.

Gavora, J. S., R. W. Fairfull, B. F. Benkel, W. J. Cantwell, J. R. Chambers. 1996. Prediction of heterosis from DNA fingerprints in chickens. Genetics 144:777-784.

Hansson, B., S. Bensch, D. Hasselquist and M. Akesson. 2001. Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc. R. Soc. Lond. B. 268:1287-1291.

Health, D. D., C. A. Bryden, J. M. Shrimpton, G. K. Iwama, J. Kelly and J. W. Heath. 2002. Relationships between heterozygosity, allelic distance (d2), and reproductive traits in chinook salmon, Oncorhynchus tshawytscha Can. J. Fish. Aquat. Sci. 59:77-84.

Jiang, X. P., Y. Z. Xiong, G. Q. Liu, C. Y. Deng and Y. C. Qu. 2003. The effect of individual heterozygosity of gene on growth performance in pig. Acta Genetica Sinica 30:82-87.

Laval, G., N. Iannuccelli, C. Legault, D. Milan, M. A. M. Groenen, E. Giuffra, L. Andersson and Nissen P. H. 2000. genetic diversity of eleven European pig breeds. Genet. Sel. Evol. 32:187-203 crossref(new window)

Li, C. C., Z. G. Wang, B. Liu, S. L. Yang, Z. M. Zhu, B. Fan, M. Yu, S. H. Zhao and K. Li. 2004. Evaluation of the genetic relationship among ten chinese indigenous pig breeds with twenty-six microsatellite markers. Asian-Aust. J. Anim. Sci. 17:441-444.

Mallet, A. L., E. Zouros, K. E. Gartner-Kepkay, K. R. Freeman and L. M. Dickie. 1985. Larval viability and heterozygote deficiency in populations of marine bivalves: evidence from pair matings of mussels. Marine Biology 87:165-172.

Nicolas, B., S. Launey, Y. Naciri-Graven and F. Bonhomme. 1998. Early effect of inbreeding as revealed by microsatellite analyses on ostrea edulis larvae. Genetics 148:1893-1906.

Reif, J. C., A. E. Melchinger, X. C. Xia, M. L. Warburton, D. A. Hoisington, S. K. Vasal, G. Srinivasan, M. Bohn and M. Frisch. 2003. Genetic distance based on simple sequence repeats and heterosis in tropical maize mopulation. Crop Sci. 43:1275-1282.

Rickwood, D. and B. D. Hames. 1982. Gel Electrophoresis of Nucleic Acids: A Practical Approach. IRL Press Limited (Translated to Chinese by Zhao Dajian et al., Science Press, Beijing, 1989, pp. 40-41).

Shikano, T. and N. Taniguchi. 2003. DNA markers for estimation of inbreeding depression and heterosis in the guppy Poecilia reticulate. Aquaculture Research 34:905-911.

Slate, J. L., E. B. Kruuk, T. C. Marshall, J. M. Pemberton and T. H. Clutton-brock. 2000. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc. R. Soc. Lond. B 267:1657-1662.

Shull, G. H. 1908. The composition of a field of maize. Am. Breed Assoc. 4:298-301.

Sun, C. Q., T. B. Jiang, Y. C. Fu and X. K. Wang. 2002. Indica–japonica differentiation of paddy rice and its relationship with heterosis. Plant Breeding 121:330-337.

Wang, X., H. H. Cao, S. M. Geng and H. B. Li. 2004. Genetic diversity of 10 indigenous pig breeds in China by using microsatellite markers. Asian-Aust. J. Anim. Sci. 17:1219-1222.

Wu, X. L., L. Xun and Merete Fredholm. 2001. The research of correlation of genomic heterzygosity with economic traits in pig population under successive inbred by microsatellite DNA marker. Acta Genetic Sinica 28:20-28.

Xiong, Y. Z. and C. Y. Deng. 1999. Principle and method of Swine Testing. Chinese Agricultural Press, Beijing

Yu, S. B., J. X. Li, C. G. Xu, Y. F. Tan, Y. J. Gao, X. H. Li, Qifa Zhang and M. A. Saghai Maroof. 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 94:9226-9231.

Zhang, Qifa, Y. J. Gao, S. H. Yang, R. A. Ragab, M. A. Saghai Maroof and Z. B. Li. 1994. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellite. Theor. Appl. Genet. 89:185-192.

Zhang, Qifa, Z. Q. Zhou, G. P. Yang, C. G. Xu, K. D. Liu and M. A. Saghai Maroof. 1996. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor. Appl. Genet. 96:1218-1224.

Zouros, E. and D. W. Foltz. 1984. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia 25:583-591.

Zuo, B., Y. Z. Xiong, Y. H. Su, C. Y. Deng, R. Zheng and S. W. Jiang. 2003. Mapping quantitative trait loci for meat quality on pig chromosome 3, 4 and 7. Asian-Aust. J. Anim. Sci. 16:320-324.