Advanced SearchSearch Tips
Effect of Supplementing Microbial Phytase on Performance of Broiler Breeders Fed Low Non-phytate Phosphorus Diet
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Supplementing Microbial Phytase on Performance of Broiler Breeders Fed Low Non-phytate Phosphorus Diet
Bhanja, S.K.; Reddy, V.R.; Panda, A.K.; Rao, S.V. Rama; Sharma, R.P.;
  PDF(new window)
An experiment was conducted to study the production performance of broiler breeder females (25 to 40 weeks of age) fed either reference diet or low non-phytate phosphorus (NPP) diet with or without microbial phytase (500 FYT/kg) supplementation. A weighed (160 g/b/d) quantity of feed from each diet was offered daily to 40 replicates of one bird each housed in California type cage having individual feeders. Each cage was considered as a replicate. A continuous 16-h light per day was provided using incandescent bulbs. Body weight, egg production, egg weight, feed per egg mass, egg specific gravity, egg breaking strength, shell thickness, tibia ash and serum Ca and protein concentrations were not affected by reducing the NPP level from 0.30 to 0.18% in the broiler breeder diet. Supplementation of phytase (500 FYT/kg) enzyme to the diet containing 0.18% NPP had no added advantage on any of the above production parameters. The serum inorganic P was increased significantly (p<0.05) by either enhancing the NPP content from 0.18 to 0.30% or supplementing phytase @500 FYT/kg to the diet containing low P which were found comparable. Retention of Ca and P was positive on all the diets. P retention decreased significantly (p<0.05) with either increase in NPP content or phytase supplementation in the diet. Neither NPP nor phytase supplementation influenced bone mineralization in terms of tibia ash and strength. The hatchability was not influenced by either increasing the NPP content or supplementing the enzyme phytase. Similarly, the P concentration in the egg yolk and day old chick, day old and 14th day body weight and leg score was not altered by increasing the level of NPP or supplementing phytase enzyme. The mortality was within the normal limits in all the three dietary groups. Thus, it can be concluded that 0.18% NPP (288 mg NPP intake/b/d) in the broiler breeder' diet is adequate in sustaining the optimum performance from 25 to 40 wks of age. Enhancing the NPP content or supplementation of phytase (500 FYT/kg diet) to diet containing 0.18% NPP had no added advantage on performance.
Non Phytate Phosphorus;Phytase;Breeders;Production Performance;
 Cited by
True Digestibility of Phosphorus in Different Resources of Feed Ingredients in Growing Pigs,;;;;;;;;;;;

아세아태평양축산학회지, 2008. vol.21. 1, pp.107-119 crossref(new window)
The Additivity of True or Apparent Phosphorus Digestibility Values in Some Feed Ingredients for Growing Pigs,;;;;;;;;;;;

아세아태평양축산학회지, 2007. vol.20. 7, pp.1092-1099 crossref(new window)
The Effects of Phytase Supplementation on Performance and Phosphorus Excretion from Broiler Chickens Fed Low Phosphorus-Containing Diets Based on Normal or Low-phytic Acid Barley,;;;;

아세아태평양축산학회지, 2009. vol.22. 3, pp.404-409 crossref(new window)
Effects of $1{\alpha}$-Hydroxycholecalciferol and Phytase on Growth Performance, Tibia Parameter and Meat Quality of 1- to 21-d-old Broilers,;;;;;;;

아세아태평양축산학회지, 2009. vol.22. 6, pp.857-864 crossref(new window)
Evaluation of Phytase Nutrient Equivalency for Old Layer Hens, Asian Journal of Poultry Science, 2008, 2, 1, 24  crossref(new windwow)
AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists (Virginia, USA, Association of Official Analytical Chemists).

Boling, S. D., M. W. Douglas, R. B. Shirley, C. M. Parsons and K. W. Koelkebeck. 2000. The effects of various dietary levels of phytase and available phosphorus on performance of laying hens. Poult. Sci. 79:535-538.

Carlos, A. B. and H. M. Jr. Edwards. 1998. The effects of 1, 25 dihydroxycholecalciferol and phytase on the natural phytate phosphorus utilization by laying hens. Poult. Sci. 77:850-858. crossref(new window)

Doumas, B. T., W. A. Watson and H. G. Biggs. 1971. Albumin standard and the measurement of serum albumin with bromocresol green. Clinical Chem. Acta 31:87.

Duncan, D. B. 1955. Biometrics, 11:1-42.

Fiske, C. H. and Y. Subba row. 1925. The colorimetric determination of phosphorus. Journal of Biol. Chem. 66:375-400.

Harms, R. H., C. B. Ammerman and P. W. Waldrop. 1964. The effects of supplemental phosphorus in the breeder diet upon hatchability of eggs and bone composition of chicks. Poult. Sci. 43:209-212.

Haugh, W. and H. J. Lantzsch. 1983. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 34:1423-1426.

Keshavarz, K. 2000. Reevaluation of non-phytate phosphorus requirement of growing pullets with and without phytase. Poult. Sci. 79:1143-1153.

Kornegay, E. T. and D. M. Denbow. 1996. Supplemental microbial phytase improves zinc utilization in broilers. Poult. Sci. 75:540-546.

Narahari, D. and I. Alfred Jayaprasad. 2001. Effect of replacement of non-phytate phosphorus with phytate phosphorus and phytase supplementation on layers performance. Indian J. Anim. Sci. 71:491-492.

National Research Council. 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC.

Nelson, T. S. 1976. The hydrolysis of phytate phosphorus by chicks and laying hens. Poult. Sci. 55:2262-2264. crossref(new window)

Nelson, T. S., T. R. Shieh, R. J. Wodzinsld and J. H. Ware. 1968. The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. Poult. Sci. 47:1842-1848.

O'Rourke, W. F., H. R. Bird, P. H. Phillips and W. W. Cravens. 1954. The effect of low phosphorus rations on egg production and hatchability. Poult. Sci. 33:1117-1122.

Pallauf, J. and G. Rimbach. 1997. Nutritional significance of phytic acid and phytase. Arch. Anim. Nutr. 50:301-319.

Rama Rao, S. V., R. V. Reddy and V. R. Reddy. 1999a. Enhancement of phytate phosphorus availability in the diets of commercial broilers and layers. Anim. Feed Sci. Tech. 79:211-222.

Rama Rao, S. V., V. R. Reddy and R. V. Reddy. 1999b. Non-phytin phosphorus requirements of commercial broilers and White Leghorn layers. Anim. Feed Sci. Tech. 80:1-10.

Ravindran, V., S. Cabahug, G. Ravindran, P. H. Selle and W. L. Bryden. 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci. 41:193-200.

Schwarz, G. 1994. Phytase supplementation and waste management. Pages 21-44 in: Proceedings BASF Symposium Arkansas Nutrition Conference. BASF Corp., Mount Olive, NJ.

Scott, T. A., R. Kampen and F. G. Silversides. 1999. The effect of phosphorus, phytase enzyme and calcium on the performance of layers fed corn-based diets. Poult. Sci. 78:1742-1749.

Sebastian, S., S. P. Touchburn and E. R. Chavez. 1998. Implications of phytic acid and supplemental microbial phytase in poultry nutrition. World’s Poult. Sci. J. 54:27-47.

Sebastian, S., S. P. Touchburn, E. R. Chavez and P. C. Lague. 1996. The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper and zinc in broiler chickens fed corn-soybean diets. Poult. Sci. 75:729-736.

Snedecor, G. W. and W. G. Cochran. 1989. Statistical methods. Oxford and IBH Publishing Company, New Delhi.

Tuijl Otto A van. 1998. Field observations and practical implications resulting from reductions in the phosphorus content of breeder and broiler diet. World’s Poult. Sci. J. 54:359-363.

Um, J. S. and I. K. Paik. 1999. Effects of microbial phytase supplementation on egg production, eggshell quality and mineral retention of laying hens fed different levels of phosphorus. Poult. Sci. 78:75-79.

Waldroup, P. W., C. F. Simpson, B. L. Damron and R. H. Harms. 1967. The effectiveness of plant and inorganic phosphorus in supporting egg production in hens and hatchability and bone development in chick embryo. Poult. Sci. 46:659-664.

Watson, L. T., C. B. Ammerman, S. M. Miller and R. H. Harms. 1970. Biological assay of inorganic manganeese for chicks. Poult. Sci. 49:1548-1554.

Wilson, H. R. and R. H. Harms. 1984. Evaluation of nutrient specifications for broiler breeders. Poult. Sci. 63:1400-1406.

Wilson, H. R., E. R. Miller, R. H. Harms and B. L. Darmon. 1980. Hatchability of chicken eggs as affected by dietary phosphorus and calcium. Poult. Sci. 59:1284-1289.

Zhang, X., D. A. Roland, G. R. McDaniel and S. K. Rao. 1999. Effect of natuphos phytase supplementation to feed on performance and ileal digestibility of protein and amino acids of broilers. Poult. Sci. 78:1567-1572. crossref(new window)