Advanced SearchSearch Tips
Association between SNPs within Prolactin Gene and Milk Performance Traits in Holstein Dairy Cattle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Association between SNPs within Prolactin Gene and Milk Performance Traits in Holstein Dairy Cattle
He, Feng; Sun, Dongxiao; Yu, Ying; Wang, Yachun; Zhang, Yuan;
  PDF(new window)
Prolactin plays an important role in mammary gland development, milk section initiation and maintenance of lactation, so the bovine prolactin gene is considered as a potential quantitative trait locus affecting milk performance traits in dairy cattle. In this study, to determine the association between prolactin and milk performance traits, the genetic polymorphisms of a part of the prolactin gene were detected in a population of 649 cows of Chinese Holstein Dairy Cattle. Three SNPs in the promoter and one SNP in the intron1 of prolactin were identified, which was A/C (-767), G/T (-485), C/A (-247), and C/T (427), respectively. Statistical results indicated that one of SNP within promote, CHBP2, was significantly associated with milk yield (p<0.01), fat yield (p<0.05), protein yield (p<0.01), and protein percentage (p<0.05). The cows with genotype BB of CHBP2 had significantly higher milk yield (p<0.01), fat yield (p<0.05), and protein yield (p<0.01) than those of cows with genotype AA, while cows with genotype AA showed the highest protein percentage (p<0.05). In addition, based on the nine major haplotypes constructed from the four SNPs, the association analysis between diplotypes and milk performance trait was carried out. Results showed that the least square mean for fat yield of diplotype H2H8 was significantly higher than those of other eleven diplotypes (p<0.05). Our findings implied that CHBP2 and H2H8 of prolactin would be useful genetic markers in selection program on milk performance traits in Holstein Dairy Cattle.
Holstein Dairy Cattle;Prolactin;Haplotype;SNPs;Milk Performance Traits;
 Cited by
Development of a Novel, Anti-idiotypic Monoclonal Anti-prolactin Antibody That Mimics the Physiological Functions of Prolactin,;;;;

아세아태평양축산학회지, 2016. vol.29. 4, pp.571-579 crossref(new window)
Polymorphisms within promoter of Japanese flounder (Paralichthys olivaceus) ovary cytochrome P450-c19 (CYP19a) gene associated with reproductive traits, Fish Physiology and Biochemistry, 2009, 35, 3, 333  crossref(new windwow)
Database of cattle candidate genes and genetic markers for milk production and mastitis, Animal Genetics, 2009, 40, 6, 832  crossref(new windwow)
Mutations in exons of the CYP17-II gene affect sex steroid concentration in male Japanese flounder (Paralichthys olivaceus), Journal of Ocean University of China, 2012, 11, 1, 99  crossref(new windwow)
Development of a Novel, Anti-idiotypic Monoclonal Anti-prolactin Antibody That Mimics the Physiological Functions of Prolactin, Asian-Australasian Journal of Animal Sciences, 2016, 29, 4, 571  crossref(new windwow)
Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403- 410

Bajic, V. B., V. Choudhary and C. K. Hock. 2004. Content analysis of the core promoter region of human genes. In Silico Biol. 4(2):109-125

Camper, S., D. N. Luck, Y. Yao, R. P. Woychik, R. G. Goodwin, R. H. Lyons Jr. and F. M. Rottman. 1984. Characterization of the bovine prolactin gene. DNA 3:237-249

Cao, X., Q. Wang, J. B. Yan, F. K. Yang, S. Z. Huang and Y. T. Zeng. 2002. Molecular cloning and analysis of bovine prolactin full-long genomic as well as cDNA sequences. Yi Chuan Xue Bao 29(9):768-73

Chrenek, P., J. Huba, M. Oravcova, L. Hetenyi, D. Peskovicova and J. Bulla. 1999. Genotypes of bGH and bPRL genes in relationships to milk production. EAAP-50th Annual Meeting, Zurich: 40

Chrenek, P., D. Vasicek, M. Bauerova and J. Bulla. 1998. Simultaneous analysis of bovine growth hormone and prolactin alleles by multiplex PCR and RFLP. Czech J. Anim. Sci. 43:53-55

Chung, E. R. and W. T. Kim. 1997. DNA polymorphism of prolactin gene in diary cattle. Kor. J. Diary Sci. 19:105-112

Chung, E. R., T. J. Rhin and S. K. Han. 1996. Association between PCR-RFLP markers of growth hormone and prolactin genes and production traits in dairy cattle. Kor. J. Anim. Sci. 38:321- 336

Cowan, C. M., M. R. Dentine, R. L. Ax and L. A. Schuler. 1989. Restriction fragment length polymorphism associated with growth hormone and prolactin genes in Holstein bulls: evidence for new growth hormone allele. Anim. Genet. 20:157-165

Daly, M. J., D. Rioux and S. F. Schaffner. 2001. High-resolution haplotype structure in the human genome. Nat. Genet. 29:229- 232 crossref(new window)

Day, R. N., T. C. Voss, J. F. Enwright, C. F. Booker, A. Periasamy, and F. Schanfele. 2003. lmaging the localized protein interactions between Pit-1 and the CCAAT/enhancer binding proteill filpha in the living pituitary cell nucleus. Mol. Endocrinol. 17:333-345 crossref(new window)

Dybus, A. 2002. Associations of growth hormone GH and prolactin PRL genes polymorphism with milk production traits in Polish Black and White cattle. Anim. Sci. Pap Rep 20:203- 212

Enwright, J. F., M. A. Kawecki-Crook, T. C. Voss, F. Schaufele, and R. N. Day. 2003. A PIT-1 homeodomain mutant blocks the intranuclear recruitment of the CCAAT/enhancer binding protein alpha required for prolactin gene transcription. Mol. Endocrinol. 17:209-222 crossref(new window)

Frisch, H., C. Kim, G. Hausler and R. Pfaffle. 2000. Combined Pituitary hormone deficiency and Pituitary hypoplasia due to a mutation of the pit-1 gene. Clin. Endocrinol. 52:661-665 crossref(new window)

Frumkin, A., R. Haffner, E. Shapira, N. Tarcic, Y. Gruenbaum and A. Fainsod. 1993. The chicken CdxA homeobox gene and axial positioning during gastrulation. Develop. 118(2):553-562

Frumkin, A., G. Pillemer, R. Haffner, N. Tarcic, Y. Gruenbaum and A. Fainsod. 1994. A role for CdxA in gut closure and intestinal epithelia differentiation. Develop. 120(2):253-263

Hallerman, E. M., J. L. Theilmann, J. S. Beckmann, M. Soller and J. E. Womack. 1988. Mapping of bovine prolactin and rhodopsin genes in hybrid somatic cells. Anim. Genet. 19:123- 131

Hart, G. L., J. Bastiaansen, M. R. Dentine and B. W. Kirkpatrick. 1993. Detection of a four-allele single strand conformation polymorphism (SSCP) in the bovine prolactin gene 5' flank. Anim. Genet. 24:149

Hayashi, K. and D. W. Yandell. 1993. How sensitive is PCRSSCP? Hum Mutat 2:338-346 crossref(new window)

Hiramatsu, H. and S. Yasugi. 2004. Molecular analysis of the determination of developmental fate in the small intestinal epithelium in the chicken embryo. Int. J. Dev. Biol. 48(10):1141-1148 crossref(new window)

Horseman, N. D., W. Zhao, E. Montecino-Rodriguez, M. Tanaka, K. Nakashima and S. J. Engle. 1997. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 16:6926-6935 crossref(new window)

Kim, J. H., B. H. Choi, H. T. Lim, E. W. Park, S. H. Lee, B. Y. Seo, I. C. Cho, J. G. Lee, S. J. Oh and J. T. Jeon. 2005. Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs. Asian-Aust. J. Anim. Sci. 18:1701

Knoblauch, H., A. Bauerfeind, C. Krahenbuhl, A. Daury, K. Rohde, S. Bejanin, L.Essioux, H. Schuster, F. C. Luft and J. G. Reinch. 2002. Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population. Hum. Mol. Genet. 11:1477-1485 crossref(new window)

Kurima, K., J. A. Proudman, M. E. EIHalawani and E. A. Wong. 1995. The turkey Prolactin-encoding gene and its regulatory region. Gene. 156:309-310 crossref(new window)

Maurer, R. A. and A. C. Notides. 1987. Identification of an estrogen responsive element from the 5'-fianking region of the rat prolactin gene. Mol. Cell. Bio. 7:4247-4254

Meng, H., J. G. Zhao, Z. H. Li and H. Li. 2005. Single Nucleotide Polymorphisms on Peroxisome Proliferator-activated Receptor Genes Associated with Fatness Traits in Chicken. Asian-Aust. J. Anim. Sci. 18:1221

Mitra, A., P. Schlee, C. R. Balakrishnan and F. Pirchner. 1995. Polymorphism at growth hormone and prolactin loci in Indian cattle and buffalo. J. Anim. Breed Genet. 112:71-74

Olivie, M. 2003. A haplotype map of the human genome. Physiol. Genom. 13:3-9

Orita, M., H. Iwahana, H. Kanazawa, K. Hayashi and T. Sekiya. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766-2770

Pawel Brym and Stanislaw Kamiñski. 2005. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J. Appl. Genet. 45(2):179-185

Putt, W., J. Palmen, V. Nicaud, D. A. Tregouet, N. Tahri-Daizadeh, D. M. Flavell, S. E. Humphries and P. J. Talmud. 2004. Variation in USFI shows haplotype effects, gene: gene and gene: environment associations with glucose and lipid parameters in the EuroPean atherosclerosis research 339 study II. Hum. Mol. Genet.13:1587-1597 crossref(new window)

Qu, L. J., X. Y. Li, G. Q. Wu and N. Yang. 2005. Efficient and sensitive method of DNA silver staining in polyacrylamide gel. Electrophoresis 26:99-101 crossref(new window)

Sachidanandam, R., D. Weissman, S. C. Schmidt, J. M. Kakol, L. D. Stein, G. Marth, S. Sherry, J. C. Mullikin, B. J. Mortimore, D. L. Willy, S. E. Hunt, C. G. Cole, P. C. Coggill, C. M. Rice, Z. Ning, J. Rogers, D. R. Bentley, P. Y. Kwok, E. R. Mardis, R. T. Yeh, B. Schultz, L. Cook, R. Davenport, M. Dante, L. Fulton, L. Hillier, R. H. Waterston, J. D. Mcpherson, B. Gilmfifl, D. Schaffner, V. W. J. Etten, D. Reich, J. Higgins, M. J. Daly, B. Blumenstiel, J. Baldwin, N. Stange--Thomann, M. C. Zody, L. Linton, E. S. Lander and D. Altshuler. 2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nat. 409:928-933 crossref(new window)

Sasavage, N. L., J. H. Nilson, S. Horowitz and F. M. Rottman. 1982. Nucleotide sequence of bovine prolactin messenger RNA. J. Biol. Chem. 257:678-681

Stephens, J. C., J. A. Schneider, D. A. Tanguay, J. Choi, T. Acharya, S. E. Stanley, R. Jiang, C. J. Messer, A. Chew, J. H. Han, J. Duan, J. L. Carr, M. S. Lee, B. Koshy, A. M. Kumar, G. Zhang, W. R. Newell, A. Windemuth, C. Xu, T. S. Kalbfleisch, S. L. Shaner, K. Arnold, V. Schulz, C. M. Drysdale, K. Nandabalan, R. S. Judson, G. Ruano and G. F. Vovis. 2001a. Haplotype variations and linkage disequilibrium in 313 human genes. Sci. 293:489-493 crossref(new window)

Stephens, M., N. Smith and P. Donnelly. 2001b. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68:978-989 crossref(new window)

Udina, I. G., S. O. Turkova, M. V. Kostuchenko, L. A. Lebedeva and G. E. Sulimova. 2001. Polymorphism of bovine prolactin gene, microsatellites. PCR-RFLP. Russian J. Genet. 4:407-411

Yoon, D. H., B. H. Cho, B. L. Park, Y. H. Choi, H. S. Cheong, H. K. Lee, E. R. Chung, I. C. Cheong and H. D. Shin. 2005. Highly Polymorphic Bovine Leptin Gene. Asian-Aust. J. Anim. Sci. 18:1548

Zhang, W. H., A. Collins and N. E. Morton. 2004. Does haplotype diversity predict power for association mapping of disease susceptibility? Hum. Genet. 115:157-164