Advanced SearchSearch Tips
Effect of Niacin Supplementation on Growth, Nutrient Utilization and Blood Biochemical Profile in Male Buffalo Calves
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Niacin Supplementation on Growth, Nutrient Utilization and Blood Biochemical Profile in Male Buffalo Calves
Kumar, Ravindra; Dass, R.S.;
  PDF(new window)
In order to investigate the effect of different levels of niacin supplementation on growth, nutrient utilization, their balance and blood biochemical profile, 15 male buffalo calves (9-10 months of age, average body weight) were divided into 3 equal groups each of 5 calves, following a completely randomized design, and fed individually for 120 days with wheat straw and concentrate mixture to meet their nutrient requirements. In addition calves were supplemented with 0 ppm (control, group I), 100 ppm (group II) and 200 ppm (group III) niacin. After 90 days of experimental feeding a metabolism trial was conducted to estimate the digestibility of nutrients and their balance. Fortnightly body weights were recorded to assess their growth rate and blood was collected from the jugular vein at day 0 and subsequently at 30-day intervals from all the experimental buffalo calves to study blood biochemical parameters. Results showed that intake and digestibility of dry matter, organic matter, crude protein, ether extract, total carbohydrates, neutral detergent fibre, acid detergent fibre, cellulose and hemicelluloses were statistically similar in the 3 groups. Buffalo calves in all three groups were in positive nitrogen, calcium and phosphorus balance, without showing any significant effect of the treatments. Dry matter, crude protein, digestible crude protein and total digestible nutrient intake () were similar in the control and niacin supplemented groups. Digestible crude protein (%) and total digestible nutrients (%) in the ration of the 3 groups were 8.07, 7.99, 7.92 and 56.70, 56.63, 56.74, respectively, and were comparable among the groups. The average daily gain (g) in-group II (567.50) was not significantly (p>0.05) higher than group I (500.0) and group III (510.0). Blood biochemical constituents (glucose, total protein, albumin, globulin, urea-N, insulin) showed no significant effect of niacin supplementation. However, serum cholesterol (mg/100 ml) was significantly (p<0.01) lower in the 200 ppm niacin-supplemented group than in the control and 100 ppm niacin-supplemented groups. It can be concluded that supplementation of niacin at 100 and 200 ppm in the diet of buffalo calves had no significant beneficial effect on their growth and nutrient utilization.
Buffalo Calves;Niacin;Growth;Nutrient Digestibility;Blood Biochemical Profile;
 Cited by
Association of Official Analytical Chemists. 1995. Official Methods of Analysis, 16th ed. Association of Official Analytical chemists, Washington, DC

Belibasakis, N. G. and D. Tsirgogianni. 1996. Effect of niacin on milk yield, milk composition and blood components of dairy cows in hot weather. Anim. Feed Sci. Technol. 64:53-59 crossref(new window)

Bhandarkar, S. D. and M. A. Pillai. 1992. Radio-immunoassay: A Laboratory Manual, Bhabha Atomic Research Center, Trombay, Bombay, India

Camacho-Fernandez, E. 1988. Use of niacin as a growth promoter for nursing heifer calves at the Calamanda Cattle Breeding Centre in Quertero. Veterinaria Mexico 19:275

Campbell, J. M., M. R. Murphy, R. A. Christensen and T. R. Overton. 1994. Kinetics of niacin supplements in lactating dairy cows. J. Dairy Sci. 77:566-575

Chang, X., D. N. Mowat and B. A. Mallard. 1995. Supplemental chromium and niacin for stressed feeder calves. Can. J. Anim. Sci. 75:351-358

Chilliard, Y. and J. F. Ottou. 1995. Duodenal infusion of oil in mid lactation cows. 7. Interaction with niacin on responses to glucose, insulin and $\beta$-agonist challenges. J. Dairy Sci. 78:2452-2463

Daghash, H. A., M. M. Azab and A. H. Etman. 1999. Influence of niacin supplementation on physiological performance of suckling Friesian calves during winter season. Assiut-Vet. Med. J. 41:136-151

Dittrich, A., R. Suss, C. Geissler, G. Flachowsky and R. Schubert. 1993. Niacin supplementation in intensive lamb production. Vitamine und weitere Zusatzstoffe bei Mensch und tier: 4 Symposium Jena (Thuringen), pp. 176-181

Doumas, B. T. 1975. Standards for total serum protein assays-A collaborative study. Clin. Chem. 21:1159-1166

Doumas, B. T., W. A. Watson and H. G. Briggs. 1971. Albumin standards and the measurement of serum albumin with bromocresol green. Clin. Chem. Acta 31:87-97 crossref(new window)

El-Barody, M. A. A., H. A. Daghash and Z. B. H. Rabie. 2001. Some physiological responses of pregnant Egyptian buffalo to niacin supplementation. Livestock Prod. Sci. 69:291-296 crossref(new window)

Elvehjem, C. A., R. J. Madden, F. M. Strong and D. W. Wollen. 1937. Relation of nicotinic acid and nicotinic acid amide to canine black tongue. J. Am. Chem. Soc. 59:1767-1768

Erickson, P. S., A. M. Trusk and M. R. Murphy. 1989. Effect of niacin source on diet digestibility and plasma free fatty acids and glucose concentrations in epinephrine stimulated lactating dairy cows. J. Dairy Sci. 72(Suppl.1):542-543

Erickson, P. S., A. M. Trusk and M. R. Murphy. 1990. Effects of niacin source on epinephrine stimulation of plasma nonesterified fatty acids and glucose concentration on diet digestibility and on rumen protozoal numbers in lactating dairy cows. J. Nutr. 120:1648-1653

Erickson, P. S., M. R. Murphy and J. H. Clark. 1992. Supplementation of dairy cows diets with calcium salt of long chain fatty acids and nicotinic acid in early lactation. J. Dairy Sci. 75:1078

Flachowsky, G. 1993. Niacin in dairy and beef cattle nutrition. Arch. Anim. Nutr. 43(3):195-213 crossref(new window)

Girard, C. L. 1998. B-Complex vitamins for dairy cows - a new approach. Can. J. Anim. Sci. 78(Suppl.):71-90

Hammond, A. C. 1983. The use of blood urea nitrogen concentration as an indicator of protein status in cattle. Bovine Practitioner 18:114

Henry, R. J. 1963. Standard Methods of Clinical Chemistry, Ist edn. Harper and Row Publishing Company, New York, USA

Horner, J. L., C. E. Coppock, J. R. Moya, J. M. Labore and J. K. Lanham. 1988. Effects of niacin and whole cottonseed on ruminal fermentation, protein degradability and nutrient digestibility. J. Dairy Sci. 71:1239-1247

Horton, G. M. J. 1992. Niacin supplementation in diets for growing lambs. Small Rumin. Res. 7:29-34 crossref(new window)

Hungate, R. E. 1966. The Rumen and its Microbes. Academic Press, New York

Jaster, E. H., D. F. Bell and T. A. McPherson. 1983. Nicotinic acid and serum metabolite concentration of lactating dairy cows fed supplemental niacin. J. Dairy Sci. 66:1039-1045

Kaneko, J. J. 1980. Clinical Biochemistry of Domestic Animals, 3rd edn. Academic Press, USA

Kumar, R. and R. S. Dass. 2005. Effect of niacin supplementation on rumen metabolites in Murrah buffaloes (Bubalus bubalis). Asian-Aust. J. Anim. Sci. 18:38-41

Magliocca, F-de-C., A. C. Silverira, L. R. Furlan, M. de-B. Arrigoni and C. Costa. 1994. The effect of niacin and monensin on the performance of young bulls at feed lot. Resquisa-Agropcuaria-Brasileira 29(6):983-988

McDowell, L. R. 1989. Vitamins in Animal Nutrition. Academic Press Inc. London, pp. 219-221

Ottou, J. F., M. Doreau and Y. Chilliard. 1995. Duodenal infusion of rapeseed oil in mid-lactation cows. 6. Interaction with niacin on dairy cattle performance and nutritional balance. J. Dairy Sci. 78:1345-1352

Pathak, N. N. and D. N. Verma. 1993. Nutrient Requirements of Buffalo. International Book Distributing Company, Lucknow, India

Riddell, D. O., E. E. Bartley and A. D. Dayton. 1981. Effect of nicotinic acid on microbial protein synthesis in vitro and on dairy cattle growth and milk production. J. Dairy Sci. 64:782-791

Shields, D. R., T. W. Perry and D. M. Schaefer. 1981. Niacin supplementation in lamb diets during adaptation to urea. Purdue Agric. Exp. Station. Sheep Day Report, April 11, pp. 7- 10

Snedecor, G. W. and W. G. Cochran. 1980. Statistical Methods, 7th ed. The Iowa State University Press, Ames, IA, p. 267

SPSS. 1996. Statistical Packages for Social Sciences, version 7.5, SPSS Inc., Illinois, USA

Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. McGraw-Hill international Book Company, New Delhi, India

Talapatra, S. K., S. N. Ray and K. C. Sen. 1940. The analysis of mineral constituents in biological material. Part I. Estimation of phosphorus, chlorine, calcium, magnesium, sodium and potassium in feedstuffs. Indian J. Vety. Sci. Anim. Husbandry 10:243-258

Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3587

Waterman, R., J. W. Schwalm and L. H. Schultz. 1972. Nicotinic acid treatment of bovine ketosis. I. Effects of circulatory metabolites and interrelationships. J. Dairy Sci. 55:1447

Wybenga, D. R., J. D.Giorgio and V. J. Pileggi. 1971. Manual and automated methods for urea-nitrogen measurement in whole serum. Clin. Chem. 17:891

Wybenga, D. R., V. J. Pileggi, P. H. Dirstine and J. D. Giorgio. 1970. Direct manual determination of serum total cholesterol with a single stable reagent. Clin. Chem. 16:980-984

Zinn, R. A., F. N. Owens, R. L. Stuart, J. R. Dunbar and B. B. Norman. 1987. B-vitamin supplementation of diets for feedlot calves. J. Anim. Sci. 65:267-277