Advanced SearchSearch Tips
Analysis of Differentially Expressed Proteins in Bovine Longissimus Dorsi and Biceps Femoris Muscles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Differentially Expressed Proteins in Bovine Longissimus Dorsi and Biceps Femoris Muscles
Kim, S.M.; Park, M.Y.; Seo, K.S.; Yoon, D.H.; Lee, H.-G.; Choi, Y.J.; Kim, S.H.;
  PDF(new window)
Skeletal muscle contains slow and fast twitch fibers. These skeletal muscle fibers express type I and type II myosin, respectively, and these myosin isoenzymes have different ATPase activity. The aim of this study was to investigate protein profiles of bovine skeletal muscles by proteomic analysis. Fifty seven spots of distinct proteins were excised and characterized. The expression of sixteen spots was differed in longissimus dorsi muscle with a minimal 2-fold change compared to biceps femoris muscle. The majority of differentially expressed proteins belonged to metabolic regulation-related proteins such as glyceraldehyde 3-phosphate dehydrogenase, triosephosphate isomerase and carbonic anhydrase 3. The real time-PCR assay confirmed an increase or induction of specific genes: RGS12TS isoform, GAPDH, triosephosphate isomerase and carbonic anhydrase. These results suggest that the expression of metabolic proteins is under a specific control system in different bovine skeletal muscle. These observations could have significant implications for understanding the physiological regulation of bovine skeletal muscles.
Longissimus Dorsi;Biceps Femoris;Skeletal Muscle;Proteome;Cattle;
 Cited by
Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants, Molecular BioSystems, 2016, 12, 9, 2722  crossref(new windwow)
Ashmore, C. R., G. Tompkins and L. Doerr. 1972. Postnatal development of muscle fiber types in domestic animals. J. Anim. Sci. 34:37-41 crossref(new window)

Barany, M. 1967. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50:197-216 crossref(new window)

Brooke, M. H. and K. Kaiser. 1970. Muscle fiber type: how many and what kind ? Arch. Neurol. 23:369 crossref(new window)

Cabiscol, E. and R. L. Levine. 1996. The phosphaase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc. Natl. Acad. Sci. USA 93:4170-4174

Chegwidden, W. R., N. D. Carter and Y. H. Edwards. 2000. The carbonic anhydrases: new horizons. Birkhauser Verlag, Boston, USA

Cornforth, D. P., A. L. Hecker, D. A. Cramer, A. A. Spindler and M. M. Mathias. 1980. Maturity and its relationship to muscle characteristics of cattle. J. Anim. Sci. 50:75-80 crossref(new window)

Dubois, D. C. and R. R. Almon. 1984. Glucocorticoid sites in skeletal muscle: Adrenalectomy, maturation, fiber type and sex. Am. J. Physiol. 247:118

Dubowitz, V. 1960. A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Histochemie 2:105-117 crossref(new window)

Hwang, I. H. 2004. Application of gel-based proteome analysis techniques to studying post-mortem proteolysis in meat. Asian-Aust. J. Anim. Sci. 17:1296-1302 crossref(new window)

Jeukendrup, A. E. 2002. Regulation of fat metabolism in skeletal muscle. Ann. NY. Acad. Sci. 967:217-235 crossref(new window)

Jones, M. B., H. Krutzsch, H. Shu, Y. Zhao, L. A. Liotta, E. C. Kohn and E. F. Petricoin. 2002. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics. 2:76-84 crossref(new window)

Jung, K. C., S. L. Yu, Y. J. Lee, K. D. Choi, J. S. Choi, Y. H. Kim, B. G. Jang, S. H. Kim, D. H. Hahm and J. H. Lee. 2005. Muscle proteome analysis for the effect of Panax Ginseng extracts in chicken: Identification of proteins using peptide mass fingerprinting. Asian-Aust. J. Anim. Sci. 18:922-926 crossref(new window)

Kichofer, K. S., C. R. Calkins and B. L. Gwartney. 2002. Fibertype composition of muscles of the beef chuck and round. J. Anim. Sci. 80:2872-2878 crossref(new window)

Kim, G., J. Selengut and R. L. Levine. 2000. Carbonic anhydrase III: the phosphatase activity is extrinsic. Arch. Biochem. Biophys. 377:334-340 crossref(new window)

Larzul, C., L. Lefaucheur, P. Ecolan, J. Gogue, A. Talmant, P. Sellier, P. Le Roy and G. Monin. 1997. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J. Anim. Sci. 75:3126-3137

Lefaucheur, L., C. Peuch, B. Barenton and P. Vigneron. 1986. Characterization of insulin binding to slices of slow and fast twitch skeletal muscles in the rabbit. Horm. Metab. Res. 18:725 crossref(new window)

Pearson, A. M. and R. B. Young. 1989. Muscle and meat biochemistry, Academic press, San Diego. CA. USA

Rieder, S. V. and I. A. Rose. 1959. The mechanism of the triosephosphate isomerase reaction. J. Biol. Chem. 234:1007-1010

Scheidegger, K., M. O'Connell, D. C. Robbins and E. Danforth. 1984. Effects of chronic beta-receptor stimulation on sympathetic nervous system activity, energy expenditure and thyroid hormones. J. Clin. Endocrinol. Metab. 58:895 crossref(new window)

Shackelford, S. D., T. L. Wheeler and M. Koohmaraie. 1995. Relationship between shear force and trained sensory panel tenderness ratings of 10 major muscles from Bos indicus and Bos Taurus cattle. J. Anim. Sci. 73:3333-3340 crossref(new window)

Solomon, M. B., R. L. West and J. F. Hentges. 1986. Growth and muscle development characteristics of purebred Angus and Brahman bulls. Growth 50:51-67

Vestergaad, M., K. Sejrsen and S. Klastrup. 1994. Growth, `composition and eating quality of longissimus dorsi from young bulls fed the beta-agonist cimaterol at consecutive developmental stages. Meat Sci. 38:55 crossref(new window)

Webster, B., S. R. Vigna, T. Paquette and D. J. Koerker. 1986. Beta-adrenergic modulation of insulin binding in skeletal muscle. Am. J. Physiol. 150:198

Yan, J. X., R. A. Harry, R. Wait, S. Y. Welson, P. W. Emery, V. R. Preedy and M. J. Dunn. 2001. Separation and identification of rat skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 1:424-34 crossref(new window)