Advanced SearchSearch Tips
Effects of Daily and Interval Feeding of Sapindus rarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Daily and Interval Feeding of Sapindus rarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep
Wina, Elizabeth; Muetzel, Stefan; Becker, Klaus;
  PDF(new window)
Several researchers have demonstrated that the rumen microbial community rapidly adapts to saponins and proposed interval feeding to prevent this rapid adaptation. An in vivo experiment was carried out to examine the effect of daily versus application every third day (interval feeding) of Sapindus rarak saponins (SE) on rumen fermentation end products, protozoal counts and nutrient digestibility. Thirty sheep were allocated into 5 groups. Sheep were fed daily or every third day with two levels of SE (0.48 and 0.72 g/kg body mass). One group received no saponin and served as control. All sheep received the same diet, a mixture of elephant grass and wheat pollard (65:35 w/w). Independent of the feeding regime and the level of inclusion, the addition of SE decreased protozoal counts and rumen ammonia concentrations (p<0.01). Microbial N supply and N retention were not affected by the high feeding regime. Daily feeding negatively influenced rumen xylanase and cellulase activity, but only when the high level of saponins was fed. However, these negative effects on rumen cell wall degradation were not reflected in decreasing total tract digestibility of the organic matter or the plant cell walls. Our results show that rumen microorganisms do not rapidly adapt to S. rarak saponins.
Digestibility;Interval Feeding;Rumen;Saponin;Sapindus rarak;
 Cited by
Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources, Asian-Australasian Journal of Animal Sciences, 2014, 27, 10, 1426  crossref(new windwow)
Effects of black seed oil and Ferula elaeochytris supplementation on ruminal fermentation as tested in vitro with the rumen simulation technique (Rusitec), Animal Production Science, 2015, 55, 6, 736  crossref(new windwow)
The Role of Ciliate Protozoa in the Rumen, Frontiers in Microbiology, 2015, 6, 1664-302X  crossref(new windwow)
Antiprotozoal Effect of Saponins in the Rumen Can Be Enhanced by Chemical Modifications in Their Structure, Frontiers in Microbiology, 2017, 08, 1664-302X  crossref(new windwow)
Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass, Tropical Animal Health and Production, 2017, 49, 4, 857  crossref(new windwow)
Abreu, A., J. E. Carulla, C. E. Lascano, T. E. Diaz, M. Kreuzer and H. D. Hess. 2004. Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. J. Anim. Sci. 82:1392-1400

Association of Official Analytical Chemists, 1984. Official Methods of Analysis, 14th edition. AOAC, Arlington, VA

Cheeke, P. R. 1996. Biological effects on feed and forage saponins and their impacts on animal production. In Saponins Used in Food and Agriculture (Ed. G. R. Waller and Y. Yamasaki), Plenum Press, New York, pp. 377-385

Cheeke, P. R. 2000. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. In Proceedings of the American Society of Animal Science, Indiapolis 10p. 1999. See:

Chen, X. B. and M. J. Gomes. 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives - an overview of the technical details. Occasional Publications IFRU, Rowett Research Institute, Aberdeen, UK. (Ed. M. Chwalek, K. Ple and L. Voutquenne-Nazabadioko) 2004. Synthesis and hemolytic activity of some hederagenin diglyosides. Chem. Pharm. Bull. 52:965-971 crossref(new window)

Conway, E. J. and A. Byrne. 1933. An absorption apparatus for the determination of certain volatile substances. I. The microdetermination of ammonia. Biochem. J. 27:419-429

Eugene, M., H. Archimede, B. Michalet-Doreau and G. Fonty. 2004. Effects of defaunation on digestion of mixed diet (fresh Digitaria decumbens grass and concentrate) at four protein to energy ratios. Anim. Res. 53:111-125 crossref(new window)

Eugene, M., H. Archimede, J. L. Weisbecker, F. Pommier, F. Nipeau and D. Sauvant. 2002. Effects of defauntion on digestion of fresh Digitaria decumbens grass and growth of lambs. In: Effects de la defaunation de ruminants sur les performances de production, en function de la ration ingeree. Etude des variations de la proteosynthese et de la cellulolyse microbienne ruminale. (M. Eugene). PhD thesis. Institut National Agronomique, Paris-Grignon, France

Francis, G., Z. Keem, H. P. S. Makkar and K. Becker. 2002. The biological action of saponins in animal systems : a review. Br. J. Nutr. 88:587-605 crossref(new window)

Groleau, D. and C. W. Forsberg. 1983. Partial characterization of the extracellular carboxymethylcellulase activity produced by the rumen bacterium Bacteroides succinogenes. Can. J. Microbiol. 29:504-517

Hamburger, M., I. Slacanin, K. Hostettmann, W. Dyatmiko and Sutarjadi. 1992. Acetylated saponins in molluscicidal activity from Sapindus rarak: Unambiguous structure determination by proton nuclear magnetic resonance and quantitative analysis. Phytochem. Anal. 3:231-237 crossref(new window)

Hess, H. D., R. A. Beuret, M. Lotscher, I. K. Hindrichsen, A. Machmuller, J. E. Carulla, C. E. Lascano and M. Kreuzer. 2004. Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim. Sci. 79:177-189

Hess, H. D., L. M. Monsalve, C. E. Lascano, J. E. Carulla, T. E. Diaz and M. Kreuzer. 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust. J. Agric. Res. 54:703-713 crossref(new window)

Holtershinken, M., U. Plitt, F. C.Tammen, P. Hoffmann and H. Scholz. 1997. Influence of mouldy grass on fermentation and thiamine metabolism in bovine rumen fluid (in vitro) Deut. Tier. Wochenschrift 104:17-22

Hristov, A. N., A. McAllister, F. H. Van Herk, K. J. Cheng, C. J. Newbold and P. R. Cheeke. 1999. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J. Anim. Sci. 77:2554-2563

Hussain, I. and P. R. Cheeke. 1995. Effect of dietary Yucca schidigera extract on rumen and blood profiles of steers fed concentrate or roughage-based diets. Anim. Feed Sci. Tech. 51:231-242 crossref(new window)

International Atomic Energy Agency. 1997. Estimation of rumen microbial protein from purine in urine. IAEA Technical Document (TECDOC) 945

Ivan, M., K. M. Koenig, B. Teferedegne, C. J. Newbold, T. Entz, L. M. Rode and M. Ibrahim. 2004. Effect of the dietary Enterolobium cyclocarpum foliage on the population dynamics of rumen ciliate protozoa in sheep. Small Rum. Res. 52:81-91 crossref(new window)

Ivan, M., L. Neill and T. Entz. 2000. Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. J. Anim. Sci. 78:750-759

Jung, H. J., C. O. Lee, K. T. Lee, J. W. Choi and H. J. Park. 2004. Structure-activity relationship of oleannane disaccharides isolated from Akebia quinata versus cytotoxicity against cancer cells and NO inhibition. Biol. Pharm. Bull. 27:744-747 crossref(new window)

Kreuzer, M. and M. Kirchgessner. 1988. Effect of rumen protozoa on metabolism and retention in ruminants with special reference to diet characteristics. In: The Roles of Protozoa and Fungi in Ruminant Digestion (Ed. J. V. Nolan, R. A. Leng and D. I. Demeyer), Penambul Books Armidale, NSW, pp. 189-198

Lemos, T. L. G., A. L. Mendes, M. P. Sousa and R. Braz-Filho. 1992. New saponin from Sapindus saponaria. Fitoterapia 93:515-517

Lemos, T. L. G., M. P. Sousa, A. L. Mendes and R. Braz-Filho. 1994. Saponin from Sapindus saponaria. Fitoterapia 95:557-558

Leng, R. A., S. H. Bird, A. Klieve, B. S. Choo, F. M. Ball, G. Asefa, P. Brumby, V. D. Mudgal, U. B. Chaudhry, S. U. Haryono and N. Hendratno. 1992. The potential for tree forage supplements to manipulate rumen protozoa to enhance protein to energy ratios in ruminants fed on poor quality forages. In Legume trees and other fodder trees as protein sources for livestock. FAO Animal Production and Health paper 102 (Ed. A. Speedy and P. L. Pugliese), FAO, Rome, Italy, pp. 177-191

Lila, Z. A., N. Mohammed, S. Kanda, T. Kamada and H. Itabashi. 2003. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 86:3330-3336

Lila, Z. A., N. Mohammed, S. Kanda, M. Kurihara and H. Itabashi. 2005. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers. Asian-Aust. J. Anim. Sci. 18:1746-1751

Lu, C. D. and N. A. Jorgensen. 1987. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutr. 117:919-927

Lu, C. D., L. S. Tsai, D. M. Schaefer and N. A. Jorgensen. 1987. Alteration of fermentation in continuous culture of mixed rumen bacteria by isolated alfalfa saponins. J. Dairy Sci. 79:799-805

Makkar, H. P. S. and K. Becker. 1996. Effect of Quillaja saponins on in vitro rumen fermentation. In: Saponins Used in Food Agriculture (Ed. G. R. Waller and K. Yamasaki), Plenum Press, New York and London, pp. 387-394

Muetzel, S., R. Akpagloh and K. Becker. 2005. Sapindus rarak saponins did not affect protein degradation in vitro. Proc. Soc. Nutr. Physiol. 14:73

Newbold, C. J., S. M. El Hassan, J. M. Wang, M. E. Ortega and R. J. Wallace. 1997. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 78:237-249 crossref(new window)

Odenyo, A. A., P. O. Osuji and O. Karanfil. 1997. Effect of multipurpose tree (MPT) supplements on ruminal ciliate protozoa. Anim. Feed Sci. Technol. 67:169-180 crossref(new window)

Oleszek, W., K. R. Price, I. J. Colquhoun, M. Jurzysta, M. Ploszynski and G. R. Fenwick. 1990. Isolation and identification of alfalfa (Medicago sativa L.) root saponins: their activity in relation to a fungal bioassay. J. Agric. Food Chem. 38:1810-1817 crossref(new window)

Preston, T. R. 1995. Tropical Animal Feeding. A manual for research workers. FAO Animal Production and Health Paper 126, FAO, Rome, Italy

Statistical Analysis Systems. 2000. SAS Procedures Guide release 8.0 SAS institute Inc., Cary, NC

Sliwinski, B. J., M. Kreuzer, H. R. Wettstein and A. Machmuller. 2002. Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins and associated emissions of nitrogen and methane. Arch. Anim. Nutr. 56:379-392 crossref(new window)

Sliwinski, B. J., M. Kreuzer, F. Sutter, A. Machmuller and H. R. Wettstein. 2004. Performance, body nitrogen conversion and nitrogen emission from manure of dairy cows fed diets supplemented with different plant extracts. J. Anim. Feed Sci. 13:73-91

Takahashi, J., B. Mwenya, B. Santoso, C. Sar, K. Umetsu, T. Kishimoto, K. Nishizaki, K. Kimura and O. Hamamoto. 2005. Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Aust. J. Anim. Sci. 18: 1199-1208

Teferedegne, B., F. McIntosh, P. O. Osuji, A. Odenyo, R. J. Wallace and C. J. Newbold. 1999. Influence of foliage from different accessions of the subtropical leguminous tree, Sesbania sesban on ruminal protozoa in Ethiopian and Scottish sheep. Anim. Feed Sci. Technol. 78:11-20 crossref(new window)

Teferedegne, B. 2000. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 59:209-214

Thalib, A., Y. Widiawati, H. Hamid, D. Suherman and M. Sabrani. 1996. The effects of saponin from Sapindus rarak fruit on rumen microbes and performance of sheep. J. Ilmu Ternak Vet. 2:17-20 (Indonesia)

Van Soest, P. J. 1994. Nutritional Ecology of the ruminant, 2nd ed. Cornell University Press, USA

Van Soest, P. J., J. B. Roberston and B. A. Lewis. 1991. Method for dietary fibre, neutral detergent fibre and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597

Wallace, R. J., L. Arthaud and C. J. Newbold. 1994. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol. 60:1762-1767

Wallace, R. J., N. R. McEwan, F. M. McIntosh, B. Teferedegne and C. J. Newbold. 2002. Natural products as manipulators of rumen fermentation. Asian-Aust. J. Anim. Sci. 15:1458-1468

Wang, Y., T. A. McAllister, L. J. Yanke, Z. J. Xu, P. R. Cheeke and K. J. Cheng. 2000. In vitro effects of steroidal saponins from Yucca schidigera extract on rumen microbes. J. Appl. Microbiol. 88:887-896 crossref(new window)

Williams, A. G. and S. E. Withers. 1991. Effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. J. Appl. Bacteriol. 70:144-155

Wina, E., S. Muetzel, E. Hoffman, H. P. S. Makkar and K. Becker. 2003. The effect of secondary compounds in forages on the rumen microorganisms quantified by 16S and 18S rRNA. Proceedings of International Symposium held in Vienna, Austria, 2003. Application of Gene-based Technology for improving animal production and health in developing countries. pp. 397-410

Wina, E., S. Muetzel, E. Hoffman, H. P. S. Makkar and K. Becker. 2005. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 121:159-174 crossref(new window)

Wina, E., S. Muetzel and K. Becker. 2006. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short and long term feeding of Sapindus rarak saponins. J. Appl. Microbiol. 100:114-122 crossref(new window)

Woldenmichael, G. M. and M. Wink. 2001. Identification and biological activities of triterpenoid saponins from Chenoposium quinoa. J. Agric. Food Chem. 49:2327-2332 crossref(new window)