Advanced SearchSearch Tips
Comparison of Rabbit Caecal Content and Rabbit Hard Faeces as Source of Inoculum for the In vitro Gas Production Technique
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Rabbit Caecal Content and Rabbit Hard Faeces as Source of Inoculum for the In vitro Gas Production Technique
Bovera, Fulvia; D'Urso, Simona; Di Meo, Carmelo; Piccolo, Giovanni; Calabro, Serena; Nizza, Antonino;
  PDF(new window)
In order to find an alternative source of inoculum to caecal content for studying the fermentation activity of rabbit hindgut, caecal content and faeces of 25 hybrid Hyla rabbits were used as inocula for an in vitro gas production trial. About 1 g of three substrates (dehydrated alfalfa meal, dehydrated beet pulp, barley) was weighed, in quadruplicate per inoculum, in 120 ml bottles; 75 ml of anaerobic medium and 4 ml of reducing solution were added and bottles were placed at . Caecal content and faeces were diluted respectively 1:2 (CI) and 1:8 (FI) with anaerobic medium and were introduced in the respective bottles (10 ml). Gas production was recorded 20 times at 2-24 h intervals throughout fermentation (96 h). The fermentation characteristics (i.e. degraded organic matter, OMd; potential gas production, A; fermentation rate, Rmax; time at which it is reached, Tmax; pH, volatile fatty acid, VFA) were studied by inoculum and feedstuffs. The feedstuffs, according to their chemical composition, showed very different fermentation characteristics. In particular, OMd, A and Rmax allowed feedstuff classification as follows: barley>beet pulp>alfalfa. The inocula differ (p<0.05) in Tmax, were higher for CI (15.53 vs. 11.96 h) and in VFA production. In particular, CI produced higher levels of acetate (38.9 vs. 33.4 mM/g OM incubated, p<0.01) and isobutyrate (0.72 vs. 0.42, p<0.01) but less propionate (7.1 vs. 10.3, p<0.01) and butyrate (11.3 vs. 14.0, p<0.01). However, the trend of gas production, similar for the inocula according to the fermented substrate, and the good regression equation to estimate some caecal fermentation parameters from faeces suggest that, after standardisation, the faeces could be used as an alternative inoculum for gas tests in rabbit.
In vitro Gas Production Technique;Faeces;Caecal Content;Rabbit;
 Cited by
Prediction of rabbit caecal fermentation characteristics from faeces by in vitro gas production technique: roughages, Journal of Animal Physiology and Animal Nutrition, 2008, 92, 3, 260  crossref(new windwow)
A model to assess the use of caecal and faecal inocula to study fermentability of nutrients in rabbit, Journal of Animal Physiology and Animal Nutrition, 2009, 93, 2, 147  crossref(new windwow)
Effect of mannanoligosaccharides supplementation on caecal microbial activity of rabbits, animal, 2010, 4, 09, 1522  crossref(new windwow)
Use of faeces as an alternative inoculum to caecal content to studyin vitrofeed digestibility in domesticated ostriches (Struthio camelusvar.domesticus), British Poultry Science, 2007, 48, 3, 354  crossref(new windwow)
Akhter, S., E. Owen, M. K. Theodorou, S. L. Tembo, E. R. Deaville. 1995. Repeatability of in vitro digestibility assays of forages when using fresh, frozen or freeze-dried cow faeces instead of sheep rumen liquor as sources of micro-organisms. Proc. of British Society of Animal Production, Winter Meeting Paper, Wageningen, The Netherland, p. 110

Allison, M. J. 1984. Microbiology of the rumen and small and large intestines. In: (Ed. M. J. Swenson). Duke's Physiology of Domestic Animals. 10th Edition. Cornstock Publishing Associates. Cornell University Press

Altaf, U. R., R. Mauricio, F. L. Mould, T. Smith, E. Owen, R. H. Phipps and M. K. Theodorou. 1998. Comparison of bovine rumen liquor and bovine faeces as sources of micro-organisms for the in-vitro gas production technique for assessing silages of maize and maize plant fractions. Proc. Br. Soc. Anim. Sci. p. 60

AOAC. 2000. Official methods of Analysis 17th Edition. Association of Official Analytical Chemists, Arlington, Virginia

Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin and W. A. Versteng Martin. 2001. Microbial activities of faeces from unweaned pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73:313-322

Blummel, M. and K. Becker. 1997. The degradability characteristics of fifty-four roughages and roughage neutraldetergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr. 77:757-768 crossref(new window)

Blummel, M. and E. R. Oskov. 1993. Comparison of in vitro gas production and nylon bag degradability of roughage in predicting feed intake in cattle. Anim. Feed Sci. Technol., 40:109-119 crossref(new window)

Calabro, S., A. Nizza, W. Pinna, M. I. Cutrignelli and V. Piccolo. 1999. Estimation of digestibility of compound diets for rabbits using the in vitro gas production technique. World Rabbit Sci. 7:197-201

Calabro, S., F. Infascelli, F. Bovera, G. Moniello and V. Piccolo. 2002. In vitro degradability of three forages: fermentation kinetics and gas production of NDF and neutral detergent soluble fraction of forages. J. Sci. Food Agric. 82:222-229 crossref(new window)

Cone, J. W., A. H. Gelder, G. J. W. Visscher and L. Oudshoorn. 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 61:113-128 crossref(new window)

Corbett, J. L. 1981. Measurement of the forage intake of grazing animals. In: (J. L. Wheeler and R. D. Mochrie), Forage Evaluation: concepts and techniques. Commonwealth Scientific and Indusrrial Research Organisation and America Forage and Grassland Council, East Melbourne, pp. 287-297

Cutrignelli, M. I., S. Calabro, R. Tudisco, F. Zicarelli, M. P. Gazaneo and V. Piccolo. 2005. Comparison of buffalo rumen liquor and buffalo faeces as inoculum for the in vitro gas production technique. Proc. of ASPA XVI Congress, Turin, Italy, pp. 319-321

Davies, Z. S., D. Mason, A. E. Brooks, G. W. Griffith, R. J. Merry and M. K. Theodorou. 2000. An automated system for measuring gas production from forages inoculated with rumen fluid and its use. Anim. Feed. Sci. Technol. 83:205-211 crossref(new window)

El Shaer, H. M., H. M. Omed, A. G. Chamberlain and R. F. E. Axford. 1987. Use of faecal organisms from sheep for the in vitro determination of digestibility. J. Agric. Sci. 109:257-259 crossref(new window)

Garcia, J., T. Gidenne, L. Falcao-e-cunha and C. de Blas. 2002. Identification of the main factors that influence caecal fermentation traits in growing rabbits. Anim. Res. 51:165-173 crossref(new window)

Gazaneo, M. P., F. Bovera, C. Di Meo, G. Piccolo and A. Nizza. 2003. Effect of inoculum from suckling rabbits of different ages on fermentation parameters obtained with the in vitro gas production technique. Proc. of Wild and domestic herbivore characterization, 17-18 October, Yucatan, Mexico, pp. 57-59

Getachew, G., M. Blummel, H. P. S. Makkar and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72:261-281 crossref(new window)

Gidenne, T. 1995. Effect of fibre level reduction and glucooligosaccharides addition on the growth performance and caecal fermentation in the growing rabbit. Anim. Feed Sci. Technol. 56:253-263 crossref(new window)

Groot, J. C. J., J. W. Cone, B. A. Williams, F. M. A. Debrasques and E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminants feed. Anim. Feed Sci. Technol. 64:77-89 crossref(new window)

Hobson, P. N. 1971. Rumen micro-organism. Proc. Ind. Microbiol. 9: 42-77

Houdijk, J. G. M. 1998. Effect of non-digestible oligosaccharides in young pig diets, Ph.D Thesis, Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands

Kern, D. L., L. L. Slyter, E. C. Leffer, J. M. Weaver and R. R. Oltjen. 1974. Ponies vs. steers: biological and chemical characteristics of intestinal ingesta. J. Anim. Sci. 38:559-564

Mauricio, R. M., E. Owen, F. L. Mould, I. Givens, M. K. Theodorou, J. France, D. R. Davies and M. S. Dhanoa. 2001. Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages. Anim. Feed Sci. Technol. 89:33-48 crossref(new window)

Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-12

Nizza, A., C. Di Meo, M. P. Gazaneo, C. Racca, F. Bovera and G. Piccolo. 2004. Effect of Birth Weight and Litter Size on Productive Performance of Rabbits. Asian-Aust. J. Anim. Sci. 17:1158-1162

O'Donovan, F. 1995. A comparison of faeces sources and buffers in the application of the faecal liquor technique. MSc Thesis, University of Wales, Bangor, UK

Omed, H. M., D. K. Lovett and R. F. E. Axford. 2000. Faeces as a source of microbial enzymes for estimating digestibility. In: Forage evaluation in Ruminant Nutrition, CABI Publishing, NY

Orskov, E. R. 1982. Protein Nutrition in Ruminants. Academic Press Inc. (London) Ltd

Pell, A. N. and P. Schofield. 1993. Computerised monitoring of gas production to measure forage digestion in vitro. J. Dairy Sci. 76:1063-1073

Piattoni, F., L. Mbanzamihigo, D. Demeyer, L. Nollet and L. Maertens. 1998. Effect of bromoethansulfonic acid and monensin on in vitro fermentation pattern of non-fasted rabbits. Anim. Feed Sci. Technol. 73:353-364 crossref(new window)

Piccolo, G., F. Bovera, C. Di Meo, M. P. Gazaneo and A. Nizza. 2005. Performance of Suckling Rabbits Fed a Low Fibre Concentrate. Asian-Aust. J. Anim. Sci. 18:1421-1424

Roszak, D. B. and R. R. Colwell. 1987. Metabolic activity of bacterial cells enumerated by direct viable counts. Appl. Environ. Microbiol. 53:2889-2893

SAS. 2000. SAS/STAT$\Re$ Software: Changes and Enhancements through Release 8.1. SAS Institute Inc., Cary, NC

Sharpe, M. E., M. J. Latham and B. Reiter. 1975. The immune response of the host animal to bacteria in the rumen and caecum. In (Ed. I. W. McDonald, A. C. I. Warner) Digestion and Metabolism in the Ruminant. The University of New England Publishing Unit, Sydney, pp. 193-204

Stanco, G., C. Di Meo, S. Calabro and A. Nizza. 2003. Prediction of nutritive value of diets for rabbits using an in vitro gas production technique. World Rabbit Sci. 11:199-210

Theodorou, M. K. 1993. A new laboratory procedure for determining the fermentation kinetics of ruminants feeds. Ciencia e Investigacion Agraria, 20:332-344

Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 19994. A simple gas production method using pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197 crossref(new window)

Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. British Grassland Soc. 18:104-111

Williams, B. A., M. Bosch, J. Houdyk and Y. van der Camp. 1997. Differences in potential fermentative capabilities of four section of porcine digestive tract. In Proc. of the 48th EAAP meeting. Vienna, Austria, Wageningen Pers., Wageningen, The Netherlands, p. 195