Advanced SearchSearch Tips
Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study
Kim, JongJoo; Farnir, Frederic;
  PDF(new window)
A simulation study was conducted to evaluate a fine-mapping method exploiting population-wide linkage disequilibrium. Data were simulated according to the pedigree structure based on a large paternal half-sib family population with a total of 1,034 or 2,068 progeny. Twenty autosomes of 100 cM were generated with 5 cM or 1 cM marker intervals for all founder individuals in the pedigree, and marker alleles and a number of quantitative trait loci (QTL) explaining a total of 70% phenotypic variance were generated and randomly assigned across the whole chromosomes, assuming linkage equilibrium between the markers. The founder chromosomes were then descended through the pedigree to the current offspring generation, including recombinants that were generated by recombination between adjacent markers. Power to detect QTL was high for the QTL with at least moderate size, which was more pronounced with larger sample size and denser marker map. However, sample size contributed much more significantly to power to detect QTL than map density to the precise estimate of QTL position. No QTL was detected on the test chromosomes in which QTL was not assigned, which did not allow detection of false positive QTL. For the multiple QTL that were closely located, the estimates of the QTL positions were biased, except when the QTL were located on the right marker positions. Our fine mapping simulation results indicate that construction of dense maps and large sample size is needed to increase power to detect QTL and mapping precision for QTL position.
QTL;Fine Mapping;Mapping Precision;Detection Power;
 Cited by
Maximizing the Selection Response by Optimal Quantitative Trait Loci Selection and Control of Inbreeding in a Population with Different Lifetimes between Sires and Dams,;;;;;

아세아태평양축산학회지, 2008. vol.21. 11, pp.1559-1571 crossref(new window)
Multifactor Dimensionality Reduction (MDR) Analysis to Detect Single Nucleotide Polymorphisms Associated with a Carcass Trait in a Hanwoo Population,;;;

아세아태평양축산학회지, 2008. vol.21. 6, pp.784-788 crossref(new window)
Detection of QTL on Bovine X Chromosome by Exploiting Linkage Disequilibrium,;

아세아태평양축산학회지, 2008. vol.21. 5, pp.617-623 crossref(new window)
Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content, Molecular Biology Reports, 2010, 37, 8, 3931  crossref(new windwow)
Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies, Molecular Biology Reports, 2011, 38, 6, 3805  crossref(new windwow)
Porcine insulin-like growth factor 1 (IGF1) gene polymorphisms are associated with body size variation, Genes & Genomics, 2013, 35, 4, 523  crossref(new windwow)
Blott, S., J.-J. Kim, S. Moisio, A. Schmidt-Kuntzel, A. Cornet, P. Berzi, N. Cambisano, C. Ford, B. Grisart, D. Johnson, L. Karim, P. Simon, R. Snell, R. Spelman, J. Wong, J. Vilkki, M. Georges, F. Farnir and W. Coppieters. 2003. Molecular dissection of a QTL: a phenylalanine to tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genet. 163:253-266

Dekkers, J. C. M. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim. Sci. 82: E313-328E

Lee, S. H. and J. H. J. van der Werf. 2005. The role of pedigree information in combined linkage disequilibrium and linkage mapping of quantitative trait loci in a general complex pedigree. Genet. 169:455-466

Farnir, F., W. Coppieters, J. Arranz, P. Berzi, N. Cambisano, B. Grisart, L. Karim, F. Marcq, L. Moreau, M. Mni, C. Nezer, P. Simon, P. Vanmanshoven, D. Wagenaar and M. Georges. 2000. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10:220-227 crossref(new window)

Farnir, F., B. Grisart, W. Coppieters, J. Riquet, P. Berzi, N. Cambisano, L. Karim, M. Mni, S. Moisio, P. Simon, D. Wagenaar, J. Vilkki and M. Georges. 2002. Simultaneous mining of linkage and linkage disequilibrium to fine-map QTL in outbred half-sib pedigrees: revisiting the location of a QTL with major effect on milk production on bovine chromosome 14. Genet. 161:275-287

Gautier, M., R. R. Barcelona, S. Fritz, C. Grohs, T. Druet, D. Boichard, A. Eggen and T. H. E. Meuwissen. 2006. Fine mapping and physical characterization of two linked quantitative trait loci affecting milk fat yield in dairy cattle on BTA26. Genet. 172:425-436

Grisart, B., F. Farnir, L. Karim, N. Cambisano, J.-J. Kim, A. Kvasz, M. Mni, P. Simon, J.-M. Frere, W. Coppieters and M. Georges. 2004. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. P.N.A.S. 101:2398-2403

Harmegnies, N., F. Farnir, F. Davin, I. Geerts, N. Buys, M. Georges and W. Coppieters. 2006. Measuring the extent of linkage disequilibrium in commercial pig populations. Anim. Genet. 37:225-231 crossref(new window)

Kim, J. J. and M. Georges. 2002. Evaluation of a new finemapping method exploiting linkage disequilibrium: a case study analysing a QTL with major effect on milk composition on bovine chromosome 14. Asian-Aust. J. Anim. Sci. 15:1250 -1256

Kim, T.-H., B.-H. Choi, D.-H. Yoon, E.-W. Park, J.-T. Jeon, J.-Y. Han, S.-J. Oh and I.-C. Cheong. 2004. Identification of quantitative trait loci (QTL) affecting teat number in pigs. Asian-Aust. J. Anim. Sci. 17:1210-1213

Kim, T.-H., B.-H. Choi, H.-K. Lee, H. S. Park, H. Y. Lee, D. H. Yoon, J. W. Lee, J.-T. Jeon, I.-C. Cheong, S.-J. Oh and J.-Y. Han. 2005. Identification of quantitative trait loci (QTL) affecting growth traits in pigs. Asian-Aust. J. Anim. Sci. 18:1524-1528

McRae, A. F., J. C. McEwan, K. G. Dodds, T. Wilson, A. M. Crawford and J. Slate. 2002. Linkage diesequilibrium in domestic sheep. Genet. 160:1113-1122

Meuwissen, T. H. E. and M. E. Goddard. 2000. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genet. 155:421-430

Meuwissen, T. H. E., A. Karlsen, S. Lien, I. Olsaker and M. Goddard. 2002. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genet. 161:373-379

Riquet, J., W. Coppieters, N. Cambisano, J. Arranz, P. Berzi, S. K. Davis, B. Grisart, F. Farnir, L. Karim, M. Mni, P. Simon, J. F. Taylor, P. Vanmanshoven, D. Wagenaar, J. E. Womack and M. Georges. 1999. Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle. Proc. Natl. Acad. Sci. USA 96:9252-9257

Schnabel, R. D., J.-J. Kim, M. S. Ashwell, T. S. Sonstegard, C. P. van Tassell, E. E. Conner and J. F. Taylor. 2005. Finemapping milk production quantitative trait loci on BTA6: analysis of the bovine osteopontin gene. P.N.A.S. 102:6896- 6901