Advanced SearchSearch Tips
Effects of Dietary Fish Oil on the Contents of Eicosapentaenoic Acid and Docosahexaenoic Acid and Sensory Evaluation of the Breast Meat in Mule Ducks
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Dietary Fish Oil on the Contents of Eicosapentaenoic Acid and Docosahexaenoic Acid and Sensory Evaluation of the Breast Meat in Mule Ducks
Huang, J.F.; Huang, Chia-Chemg; Lai, M.K.; Lin, J.H.; Lee, C.H.; Wang, T.Y.;
  PDF(new window)
The objectives of this study were to investigate the effects of dietary fish oil inclusion on the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents and organoleptic characteristics of breast meat in mule ducks. Three hundred mule ducks at four weeks of age were randomly assigned to three dietary treatments with five replicate pens in each. One replicate pen had ten males and females each with a total of 100 ducks in each treatment. The diet in the three treatments contained 0, 1.5, and 3.0% fish oil, respectively. Body weights at 4, 6, 8, and 10 weeks of age, and feed efficiency at 4 to 6, 6 to 8, and 8 to 10 weeks of age were recorded. At 10 weeks of age, one male and one female from each replicate were sacrificed for oxidative stability of breast meat and the sacrificed males were employed for the analysis of fatty acids in breast meat and skin. Sensory evaluation of breast meat was also performed. A level of 3.0% fish oil in the diet significantly deteriorated feed efficiency and body weight gain. Dietary fish oil inclusion had a trend of increasing abdominal fat deposition and decreasing the flavor of breast meat. The EPA and DHA contents in the breast meat were higher than those in the breast skin irrespective of oil sources. The EPA and DHA contents in breast meat and breast skin was significantly increased in the 3.0% fish oil group. Although EPA and DHA were not efficiently deposited in the duck meat through dietary fish oil inclusion, this method can still provide a partial supplementation of EPA and DHA.
Fish Oil;EPA;DHA;Breast Meat;Mule Duck;
 Cited by
Effect of different fat sources in parental diets on growth performance, villus morphology, digestive enzymes and colorectal microbiota in pigeon squabs, Archives of Animal Nutrition, 2013, 67, 2, 147  crossref(new windwow)
Akiba, Y., M. Toyomizu, K. Takahashi and K. Sato. 2001. Nutrition: The key role for optimization of growth and carcass quality in broiler chickens. Asian-Aust. J. Anim. Sci. 14(special issue):148-163

Allard, J. P., R. Kurian, E. Aghdassi, R. Muggli and D. Royall. 1997. Lipid oxidation during n-3 fatty acid and vitamin E supplementation in humans. Lipids 32:535-541 crossref(new window)

AOAC. 1998. Official Methods of Analysis, 16 edn. Association of Analytical Chemists, Washington, DC

Baeza, E. 1999 Structural, chemical, technological characteristics of Muscovy, Peking and mule duck meat. In: Symposium INRA/COA on Scientific Cooperation in Agriculture, Toulouse, France. pp. 105-116

Chen, I. J., C. C. Huang, C. M. Pan, C. Y. Lin, A. J. Huang and Y. H. Lin. 2000. Effects of fish oil inclusion on $\omega$-3 polysaturated fatty acids in duck eggs. J. Chin. Soc. Anim. Sci. 29:243-253 (in Chinese)

Chen, T. F. and J. C. Hsu. 2003. Incorporation of n-3 long-chain polyunsaturated fatty acids into duck egg yolks. Asian-Aust. J. Anim. Sci. 16(4):565-569 crossref(new window)

Chen, T. F. and J. C. Hsu. 2004. Effects of n-3 polyunsaturated fatty acids-enriched diet supplemented with different levels of $\alpha$-Tocopherol on lipid metabolism in laying Tsaiya ducks. Asian-Aust. J. Anim. Sci. 17(11):1562-1569 crossref(new window)

Cherian, G., F. H. Wolfe and J. S. Sim. 1996. Feeding dietary oils with tocopherols: Effects on internal qualities of eggs during storage. J. Food Sci. 61:15-18 crossref(new window)

Dwyer, J. T. 1997. Human studies on the effects of fatty acids on cancer: summary, gaps and future research. Am. J. Clin. Nutr. 66:1581S-1586S crossref(new window)

Farrell, D. J. 1991. Manipulation of growth, carcass composition and fatty acid content of meat-type ducks using short-term feed restriction and dietary additions. J. Anim. Physiol. Anim. Nutr. 65:146-153 crossref(new window)

Faustman, C., S. M. Specht, L. A. Malkus and D. M. Kinsman. 1992. Pigment oxidation in ground veal: influence of lipid oxidation, iron, and zinc. Meat Sci. 31:351-362 crossref(new window)

Gonzalez-esquerra, R. and S. Leeson. 2000. Effects of menhaden oil and flaxseed in broiler diets on sensory quality and lipid composition of poultry meat. Br. Poult. Sci. 41:481-488 crossref(new window)

Harris, W. S. 1997. n-3 Fatty acids and serum lipoproteins: human studies. Am. J. Clin. Nutr. 65:1645S-1654S crossref(new window)

Huang, Z-B., H. Leiboyitz, M. Lee and R. Miller. 1990. Effect of dietary fish oil on omega-3 fatty acid levels in chicken eggs and thigh meat. J. Agric. Food Chem. 38:743-747 crossref(new window)

Jan, S. S. 2000. Distribution of fat in carcass from different duck breeds and its effect on the flavor of roast ducks. Master Thesis, National Chung-Hsing University, Taichung, Taiwan

Klasing, K. C. 1998. Lipids. In Comparative Avian Nutrition. CAB International, Wallingford, pp. 171-200

Knapp, H. R. 1989 Omega-3 fatty acids, endogenous prostaglandins and blood pressure regulation in humans. Nutr. Rev. 47:301-313 crossref(new window)

Leskanich, C. O. and R. C. Noble. 1997. Manipulation of the n-3 polysaturated fatty acid composition of avian eggs and meat. World's Poult. Sci. J. 53:155-183 crossref(new window)

Li, Y. T., T. F. Chen, C. M. Pan and C. Y. Lin. 1999. Investigation of requirement of crude protein for three-stage feeding of mule ducks. Taiwan Livestock Res. 32:313-322 (in Chinese)

Lien, T. F., C. P. Wu and J. J. Lu. 2003. Effects of cod liver oil and chromium picolinate supplements on the serum traits, egg yolk fatty acids and cholesterol content in laying hens. Asian-Aust. J. Anim. Sci. 16(8):1177-1181 crossref(new window)

L'opez-Ferrer, S., M. D. Baucells, A. C. Barroeta and M. A. Grashorn. 1999. N-3 enrichment of chicken meat using fish oil: alternative substitution with rapeseed and linseed oils. Poult. Sci. 78:356-365 crossref(new window)

Marshall, A. C., A. R. Sams and M. E. Van Elswyk. 1994. Oxidative stability and sensory quality of stored eggs from hens fed menhaden oil. J. Food Sci. 59:561-563 crossref(new window)

Miller, D., E. H. Gruger Jr., K. C. Leong and G. M. Knobl. 1967. Effect of refined menhaden oils on the flavor and fatty acid composition of broiler flesh. J. Food Sci. 32:342-345 crossref(new window)

Miller, D., K. C. Leong and P. Smith Jr. 1969. Effect of feeding and withdrawal of menhaden oil on the $\omega$3 and $\omega$6 fatty acid content of broiler tissues. J. Food Sci. 34:136-141 crossref(new window)

Miller, D. and P. Robisch. 1969. Comparative effect of herring, menhaden, and safflower oils on broiler tissues fatty acid composition and flavor. Poult. Sci. 48:2146-2157 crossref(new window)

Neudoerffer, T. S. and C. H. Lea. 1966. Effects of dietary fish oil on the composition and stability of turkey depot fat. Br. J. Nutr. 20:581-594 crossref(new window)

Neudoerffer, T. S. and C. H. Lea. 1967. Effects of dietary polysaturated fatty acids on the composition of the individual lipids of turkey breast and leg muscle. Br. J. Nutr. 21:691-714 crossref(new window)

Pond, W. G., D. C. Church and K. R. Pond. 1995. Lipids. In Basic Animal Nutrition and Feeding. 4th Ed. John Wiley & Sons, New York, pp. 95-117

Ratnayake, W. M. N., R. G. Ackman and H. W. Hulan. 1989. Effect of redfish meal enriched diets on the taste and n-3 PUFA of 42-day-old broiler chickens. J. Sci. Food Agric. 49:59-74 crossref(new window)

SAS Institute, Inc. 1988. SAS/STAT User's Guide: Version 6. 3rd edn. SAS Institute Inc., Cary, North Carolina

Scott, M. L. and W. F. Dean. 1991. Growth, carcass composition and liver pate production. In: Nutrition and Management of Ducks. Cornell University, Ithaca, New York, pp. 35-54

Suk, Y. O., C. H. H. Lin, J. Ryue and D. E. Bell. 1994. Eggs enriched with omega-3 fatty acids as a wholesome food. J. Appl. Nutr. 46:14-25

Uauy, R., P. Peirano, D. Hoffman, P. Mena, D. Birch and E. Birch. 1996. Role of essential fatty acids in the function of the developing nervous system. Lipids 31:S167-S176 crossref(new window)

Van Elswyk, M. E., P. L. Dawson and A. R. Sams. 1995. Dietary menhaden oil influences sensory characteristics and headspace volatiles of shell eggs. J. Food Sci. 60:85-89 crossref(new window)

Yau, J. C., J. H. Denton, C. A. Bailey and A. R. Sams. 1991. Customizing the fatty acid content of broiler tissues. Poult. Sci. 70:167-172 crossref(new window)