Advanced SearchSearch Tips
Estimation of Genetic Variation in Holstein Young Bulls of Iran AI Station Using Molecular Markers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of Genetic Variation in Holstein Young Bulls of Iran AI Station Using Molecular Markers
Rahimi, G.; Nejati-Javaremi, A.; Saneei, D.; Olek, K.;
  PDF(new window)
Genetic profiles of Iranian Holstein young bulls at the national artificial insemination station were determined on the basis of individual genotypes at 13 ISAG's recommended microsatellites, the most useful markers of choice for parentage identification. In the present study a total of 119 individuals were genotyped at 13 microsatellite loci and for possible parent-offspring combinations. A high level of genetic variation was evident within the investigated individuals as assessed from various genetic diversity measures. The mean number of observed alleles per microsatellite marker was 9.15 and the number of effective alleles as usual was less than the observed values (4.03). The average observed and expected heterozygosity values were 0.612 and 0.898, respectively. The mean polymorphic information content (PIC) value (0.694) further reflected a high level of genetic variability. The average exclusion of probability (PE) of the 13 markers was 0.520, ranging from 0.389 to 0.788. The combined exclusion of probability was 0.999, when 13 microsatellite loci were used for analysis in the individual identification system. Inbreeding was calculated as the difference between observed and expected heterozygosity. Observed homozygosity was less than expected which reflects inbreeding of -3.7% indicating that there are genetic differences between bull-sires and bull-dams used to produce young bulls. The results obtained from this study demonstrate that the microsatellite DNA markers used in the present DNA typing are useful and sufficient for individual identification and parentage verification without accurate pedigree information.
Parentage Control;Genetic Diversity;Inbreeding;Microsatellite Markers;
 Cited by
Arora, R. and S. Bhatia. 2004. Genetic structure of Muzzafarnagari sheep based on microsatellite analysis. Small Rumin. Res. 54:227-230 crossref(new window)

Barker, J. S. F., S. S. Moore, D. J. S. Hetzel, D. Evans, S. G. Tan and K. Byrne. 1997. Genetic diversity of Asian water buffalo (Bubalus bubalus) microsatellite variation and a comparison with protein-coding loci. Anim. Genet. 28:103-115 crossref(new window)

Botstein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Human Genet. 32:314- 331

Dorji, T., O. Hanottel, M. Arbenz, J. E. Rege and W. Roder. 2003. Genetic Diversity of indigenous cattle populations in Bhutan: Implications for conservation. Asian-Aust. J. Anim. Sci. 16(7):946-951

Estoup, A., F. Rousset, Y. Michalakis, J. M. Cornuet, M. Adriamanga and R. Guyomard. 1998. Comparison analysis of microsatellite and allozyme markers, a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol. Ecol. 7:339-353 crossref(new window)

Glowtzki-Mullis, M., C. Gaillard, G. Wigger and R. Fries. 1995. Microsattelite based parentage control in cattle. Anim. Genet. 26:7-12

Goldstein, D. B. and D. D. Polack. 1997. Launching microsatellites: A review of mutation process and methods of phylogenetic inference. J. Hered. 10:335-342

Grawford, A. M., K. G. Dodds, A. J. Ede, C. A. Pierson, G. W. Montgomery, H. G. Garmonsway and A. E. Battie. 1995. An Autosomal genetic linkage map of the sheep genome. Genet. 140:703-724

Groenen, M. A. M., H. Cheng, N. Bumstead, B. F. Benkel, W. E. Briles, T. Burke, D. W. Burt, L. B. Crittenden, J. Dodgson, J. Hillel, S. Lamnot, A. Ponce de leon, M. Soller, H. Tahahashi and A. Vignal. 2000. A consensus map of the chicken genome. Genome Res. 137-134

Guo, S. W. and E. A. Thompson. 1992. Performing the exact test of hardy-wienberg proportions for multiple alleles. Biomet. 48:361-372 crossref(new window)

Hartl, D. L. and A. G. Clark. 1989. Effective allele number. In: Principle of population genetics, 2nd ed. Sinaure Associates, (Ed. M. A. Stunderland), p. 125

Hedrick, P., R. Fredrickson and H. Ellegren. 2001. Evaluation of d2, a microsatellite measure of inbreeding and outbreeding in wolves with a known pedigree. Evolution, 55:1256-1260

Hines, H. C. 1999. Blood groups and biological polymorphisms. In: Genetics of cattle. (Ed. R. Fries and A. Ruvinsky), CABI Publishing

Lubieniecka, J., G. Grzybowski, T. Grzybowski, D. Miscicka- Sliwka, K. Lubieniecka and J. Czarny. 1999. Polymorphism at microsatellite loci in Piedmontese cattle by automated DNA sizing technology. Anim. Sci. 2:25-34

Marshall, T. C. 2000. A program designed for a large-scale parentage analysis using codominance loci (CERVUS, version 2.0). University of Edinburgh, UK

Marshall, T. C., J. Slate, L. E. B. Kruuk and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mole. Ecol. 7:639-655 crossref(new window)

Moioli, B., A. Georgoudis, F. Napolitano, G. Catillo, E. Giubilei, C. Ligda and M. Hassanane. 2001. Genetic Diversity between Italian, Greek and Egyptian buffalo populations. Livest. Prod. Sci. 70:203-211 crossref(new window)

Lukas, F. K. and M. W. Donald. 2002. Inbreeding effects in wild populations. Trends in Ecology and Evolution, 5:230-241

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genet. 89:583- 590

Peelman, L. G., F. Mortiaux, A. Van zevern, A. Dansercoer, G. Mommens, F. Coopman, Y. Bouquet, A. Burny, R. Renaville and V. Portetelle. 1998. Evaluation of the genetic variabillity of 23 bovine microsatellite markers in four Belgian cattle breeds. Anim. Genet. 29:161-167 crossref(new window)

Sasazaki, S., T. Honda, M. Fukushima, K. Oyama, H. Mannen, F. Mukai and S. Tsuji. 2004. Genealogical relationship between pedigree and microsatellite information and analysis of genetic structure of a highly inbred Japanese black cattle strain. Asian- Aust. J. Anim. Sci. 17(10):1355-1359

Slate, J., T. C. Marshall and J. M. Pemberton. 2000. A retrospective assessment of the accuracy of the paternity inference program Ceruvs. Mole. Ecol. 9:801-808 crossref(new window)

Taylor, J. F., A. Eggen, A. Aleysasin, S. M. Armitage, W. Barendse, J. E. Beever, M. D. Bishop, R. A. Bernnenman, B. M. Burns, S. K. Davis, K. T. Elo, B. Harizius, S. M. Kappes, J. W. Keele, S. J. Kemp, B. W. Kirkpatrick, H. A. Lewin, R. Z. Ma, R. A. McGrwa, D. Pomp, R. T. Stone, Y. Sugimoto, A. J. Teal, D. Vaiman, J. Viokki, J. L. Williams, C. Yeh and M. C. Zanotti. 1998. Report of the first workshop on the chromosome on the genetic map of bovine chromosome 1. Anim. Genet. 29:228- 235 crossref(new window)

Van Marle-Koster, E. and L. H. Nel. 2003. Genetic markers and their application in livestock breeding in South Africa: A review. South African J. Anim. Sci. 33:1-10

Vignal, A., D. Milan, M. SanCristobal and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Selec. Evol. 34:175-305

Wang, X., H. H. Caol, S. M. Geng and H. B. Li. 2004. Genetic Diversity of 10 indigenous pig breeds in china by using microsatellite markers. Asian-Aust. J. Anim. Sci. 17(9):1219- 1222

Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE, version 1.31. Microsoft windows-based Freeware for population genetic analysis. Molecular Biology and Technology Center, University of Alberta, Canada

Yoon, D. H., H. S. Kong, J. D. Oh, J. H. Lee, B. W. Cho, J. D. Kim, K. J. Jeon, C. J. Jo, G. J. Jeon and H. K. Lee. 2005. Establishment of an individual identification system based on microsatellite polymorphisms in Korean Cattle (Hanwoo). Asian-Aust. J. Anim. Sci. 18(6):762-766