Advanced SearchSearch Tips
The Respective Effects of Shoot Height and Conservation Method on the Yield and Nutritive Value, and Essential Oils of Wormwood (Artemisia montana Pampan)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Respective Effects of Shoot Height and Conservation Method on the Yield and Nutritive Value, and Essential Oils of Wormwood (Artemisia montana Pampan)
Kim, S.C.; Adesogan, A.T.; Ko, Y.D.;
  PDF(new window)
This study was conducted to evaluate the shoot height at which the yield and nutritive value of wormwood (Artemisia montana) is optimized in order to provide information on its potential to support animal production (Experiment 1). A second objective was to determine how the essential oil (EO) concentration in wormwood hay and silage differ (Experiment 2). In Experiment 1, Artemisia montana was harvested at five different shoot heights (20, 40, 60, 80 and 100 cm) from triplicate plots. Dry matter (DM) yield was measured at each harvest date and the harvested wormwood was botanically separated into leaf, stalk and whole plant fractions and analyzed for chemical composition and in vitro dry matter digestibility (DMD). Values for total digestible nutrients (TDN), digestible energy (DE) and metabolizable energy (ME) were subsequently calculated using prediction equations. Dry matter yields of stalk and whole plant increased linearly (p<0.001) and leaf yield increased quadratically (p<0.01) with shoot height, whereas the leaf/stalk ratio decreased linearly (p<0.001). As shoot height increased, there was a linear increase (p<0.001) in leaf DM, ether extract (EE) and neutral detergent fiber (NDF) contents and a quadratic increase (p<0.05) in leaf acid detergent fiber (ADF) and nitrogen free extract (NFE) contents, and stalk and whole plant DM (p<0.001), organic matter (OM, p<0.01 and p<0.05), NDF (p<0.001 and 0.05) and NFE (p<0.05) contents. However, there were decreases in leaf crude protein content (CP, quadratic, p<0.001) and stalk and whole plant EE content (linear, p<0.001), CP (quadratic, p<0.05) and ash (quadratic, p<0.05) contents. Digestibility of DM and TDN, and DE and ME value in leaves were not affected by increasing shoot height, but these measures linearly decreased (p<0.001) in stalk and whole plant. In Experiment 2, the hay had higher DM and CP concentrations, but lower EE concentration than the silage. Essential oil (EO) content in wormwood silage (0.49 g/100 g DM) was higher (p<0.05) than that in wormwood hay (0.32 g/100 g DM). Wormwood hay contained 25 essentail oils (EO) including camphor (10.4 g/100 g), 1-borneol (11.6 g/100 g) and caryophyllene oxide (27.7 g/100 g), and wormwood silage had 26 EO constituents including 3-cyclohexen-1-ol (8.1 g/100 g), trans-caryophyllene (8.6 g/100 g) and -selinene (16.8 g/100 g). It is concluded that the most ideal shoot height for harvesting wormwood is 60 cm based on the optimization of DM yield and nutritive value. Wormwood silage had a greater quantity and array of EO than wormwood hay.
Wormwood;Maturity;Yield;Pepsin-cellulase Digestibility;Essential Oil;
 Cited by
Abe, A. and S. Horii. 1974. Application of various fiber fraction and cellulase method of forage. J. Jpn. Grassl. Sci. 20:16-21

AOAC. 1990. Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists. Arlington, Virginia

Benchaar, C., E. Charmley and J. Duynisveld. 2004. Effects of monensin and different dose levels of essential oils on feed intake, growth performance and feed efficiency of beef cattle. J. Anim. Sci. 82(Suppl. 1):40

Castillejos, L., L. Calsamiglia, A. Ferret and R. Losa. 2005. Effects of a specific blend of essential oil compounds and the type of diet on rumen microbial fermentation and nutrient flow in a continuous culture system. Anim. Feed Sci. Technol. 119:29-41 crossref(new window)

Cerrillo, M. A., J. R. Russell and M. H. Crump. 1999. The effects of hay maturity and forage to concentrate ratio on digestion kinetics in goats. Small Rum. Res. 32:51-60 crossref(new window)

Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132

Cho, J. H., Y. J. Chen, B. J. Min, H. J. Kim, O. S. Kwon, K. S. Shon, I. H. Kim, S. J. Kim and A. Asamer. 2006. Effects of essential oils supplementation on growth performance, IgG concentration and fecal noxious gas concentration of weaned pigs. Asian-Aust. J. Anim. Sci. 19:80-85

Cho, Y. H. and M. H. Chiang. 2001. Essential oil composition and antibacterial activity of Artemisia capillaries, Artemisia argyi and Artemisia princeps. Kor. J. Intl. Agric. 13:313-320

Cosnier, A. 1989. Medical composition containing mugwort extract used to treat gynaecological disorders e.g. post partum complication. France patent, 2623397

Erwin, E. S., J. Marco and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771

Estell, R. E., E. L. Fredrickson, M. R. Tellez, K. M. Havstad, W. L. Shupe, D. M. Anderson and M. D. Remmenga. 1998. Effects of volatile compounds on consumption of alfalfa pellets by sheep. J. Anim. Sci. 76:228-233

Fenner, H. and J. M. Elliot. 1963. Quantitative method for determining the steam volatile fatty acid in the rumen fluid by gas chromatography. J. Anim. Sci. 22:624-627

French, M. H. 1957. Nutritional value of tropical grasses and fodders. Herbage Abstracts. 27:1-9

Hirasa, K. and M. Takemasa. 1998. Spice science technology. Marcel Dekker Inc., New York, USA

Hill, J. and J. D. Leaver. 1999. Effect of stage of growth at harvest and level of urea application on chemical changes during storage of whole-crop wheat. Anim. Feed Sci. Technol. 77:281-301 crossref(new window)

Hoffmann, B. Z. and K. Herrmann. 1982. Phenolic species. 8. Flavonol glycosides of mugwort (Artemisia vulgaris), tarragon (Artemisia dracunculus L.) and absinthe (Artemisia absinthium L.). Z. Lebensm. Unters-Forsch. 174:211-215 crossref(new window)

Jang, I. S., Y. H. Ko, H. Y. Yang, J. S. Ha, J. Y. Kim, S. Y. Kang, D. H. Yoo, D. S. Nam, D. H. Kim and C. Y. Lee. 2004. Influence of essential oil components on growth performance and the functional activity of the pancreas and small intestine in broiler chickens. Asian-Aust. J. Anim. Sci. 17:394-400

Kim, D. J., Y. K. Kim and W. J. Maeng. 1989. Study on the dry matter digestibility of domestic herbage by pepsin-cellulase technique. Kor. J. Anim. Sci. 32:324-333

Kim, J. G. 1995. Nutritional properties of Chol-Pyon preparation by adding mugwort and pine leaves. Kor. J. Soc. Food Sci. 11:446-455

Kim, J. H., C. H. Kim and Y. D. Ko. 2002a. Influence of dietary addition of dried wormwood (Artemisia sp.) on the performance and carcass characteristics of Hanwoo steers and the nutrient digestibility of sheep. Asian-Aust. J. Anim. Sci. 15:390-395

Kim, S. C., A. T. Adesogan, J. H. Kim, J. H. Shin and Y. D. Ko. 2006a. Influence of replacing rice straw with wormwood (Artemisia Montana Pampan) silage on feed intake, digestibility and ruminal fermentation characteristics of sheep. Anim. Feed Sci. Technol. In press

Kim, S. C., A. T. Adesogan, J. H. Shin, M. D. Lee and Y. D. Ko. 2006b. The effect of increasing the level of dietary wormwood (Artemisia Montana Pampan) on intake, digestibility, N balance and ruminal fermentation characteristics in sheep. Livest. Prod. Sci. In press

Kim, S. C., J. H. Kim, J. H. Shin, A. T. Adesogan and Y. D. Ko. 2004. Effects of replacing rice straw with wormwood (Artemisia Montana Pampan) silage in the diets of Korean Hanwoo steers on performance, carcass characteristics and muscle fatty acid profile. J. Anim. Sci. 82(Suppl. 1):45

Kim, T. G. 1996. Plant sources of Korea IV. Seoul National University press, Seoul, Korea. pp. 260

Kim, Y. M., J. H. Kim, S. C. Kim, H. M. Ha, Y. D. Ko and C. H. Kim. 2002b. Influence of dietary addition of dried wormwood (Artemisia sp.) on the performance, carcass characteristics and fatty acid composition of muscle tissues of Hanwoo heifers. Asian-Aust. J. Anim. Sci. 15:549-554

Kim, Y. S., J. H. Lee, M. N. Kim, W. G. Lee and J. O. Kim. 1994. Volatile flavor compounds from raw mugwort leaves and parched mugwort tea. J. Kor. Soc. Food Nutr. 23:261-267

Ko, Y. D., J. H. Kim, A. T. Adesogan, H. M. Ha and S. C. Kim. 2006. The effect of replacing rice straw with dry wormwood (Artemisia sp.) on intake, digestibility, nitrogen balance and ruminal fermentation characteristics in sheep. Anim. Feed Sci. Technol. 125:99-110 crossref(new window)

Kozloski, G. V., J. Perottoni and L. M. B. Sanchez. 2005. Influence of regrowth age on the nutritive value of dwarf elephant grass hay (Pennisetum purpureum Schum. cv. Mott) consumed by lambs. Anim. Feed Sci. Technol. 119:1-11 crossref(new window)

Lee, S. J. 1975. Studies on the origin of Korean folk medicines. J. Korean Natural Product Sci. 6:75-92

Lee, S. J., H. Y. Chung, I. Y. Lee and I. D. Yoo. 1999. Isolation and identification of flavonoids from ethanol extracts of Artemisia vularis and their antioxidant activity. Kor. J. Food. Sci. Technol. 31:815-822

McCahon, C. B., R. G. Kelsey, R. P. Sheridan and F. Shafizadeh. 1973. Physiological effects of compounds extracted from sagebrush. Bulletin of the Torrey Botanical Club. 100:23-28 crossref(new window)

Mcleod, M. N. and D. J. Minson. 1978. The accuracy of the pepsin-cellulase technique. Anim. Feed Sci. Technol. 3:277- 287 crossref(new window)

Merchen, N. R. and L. D. Bourquin. 1994. Processes of digestion and factors influencing digestion of forage-based diets by ruminants. In (Ed. G. C. Fahey Jr.), Forage Quality, Evaluation, and Utilization. ASA, CSSA, SSSA, Madison, WI, USA, pp. 564-612

Minson, D. J. 1971. The place of chemistry in pasture evaluation. Proceedings of the Royal Australian Chemical Institute. 38:141-145

Molero, R., M. Ibars, S. Calsamiglia, S. Ferret and R. Losa. 2004. Effects of a specific blend of essential oil compounds on dry matter and crude protein degradability in heifers fed diets with different forage to concentrate ratios. Anim. Feed Sci. Technol. 114:91-104 crossref(new window)

National Research Council. 1973. Nutrition requirements of dairy cattle 4th revised Ed. National Academy Press. Washington, D. C.

Nelson, C. J. and L. E. Moser. 1994. Plant factors affecting forage quality. In: (Ed. G. C. Fahey Jr.), Forage quality, evaluation, and utilization. ASA, CSSA, SSSA, Madison, WI, USA, pp. 115-154

Newbold, C. J., F. M. McIntosh and P. Williams. 2004. Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 2004:105-112

Rho, T. H. and G. S. Seo. 1993. Growth characteristics and chemical components in local collection of Artemisia sp. Kor. J. Medical Crop Sci. 1:171-177

Rho, T. H. and G. S. Seo. 1994. Growth characteristics and contents of chemical components in early cultured Artemisia sp. Kor. J. Medical Crop. Sci. 2:95-100

Saddul, D., Z. A. Jelan, J. B. Liang and R. A. Halim. 2005. Evaluation of mulberry (Morus alba) as potential feed supplement for ruminants: The effect of plant maturity on in situ disappearance and in vitro intestinal digestibility of plant fractions. Asian-Aust. J. Anim. Sci. 18:1569-1574

SAS. 1990. SAS/STAT User's Guide, version 6, 4th ed., SAS Institute Inc., Cary, NC

Schlattererr, E. F. and E. W. Tisdale. 1969. Effects of litter of Artemisia, Chrysothamnus and Tortula on germination and growth of three perennial grasses. J. Ecol. 50:869-873 crossref(new window)

Schultz, T. H., R. A. Flath, T. R. Mon, S. B. Eggling and R. Teranishi. 1977. Isolation of volatile components from a model system. J. Agric. Food Chem. 25:446-449 crossref(new window)

Skyles, A. J. and B. V. Sweet. 2004. Wormwood. Am. J. Health Syst. Pharm. 61:239-241

Thomas, J. W., L. D. Brown, R. S. Emery, E. J. Benne and J. T. Huber. 1968. Comparisons between alfalfa silage and hay. J. Dairy Sci. 52:195-204

Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant, 2nd ed. Cornell University Press, New York, NY, USA

Van Soest, P. J. 1996. Environment and forage quality. In: Proceedings of Cornell Nutrition Conference for Food Manufacturers, 58, Cornell University, Ithaca, NY, USA, pp. 1- 9

Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3568-3597

Weyerstahl, P., V. K. Kaul, M. Weirauch and H. Marschall- Weyerstahl. 1987. Volatile constituents of Artemisia tridentate oil. Planta Medica. 53:508-512