JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Metabolic Elasticity and Induction of Heat Shock Protein 70 in Labeo rohita Acclimated to Three Temperatures
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Metabolic Elasticity and Induction of Heat Shock Protein 70 in Labeo rohita Acclimated to Three Temperatures
Das, T.; Pal, A.K.; Chakraborty, S.K.; Manush, S.M.; Chatterjee, N.; Apte, S.K.;
  PDF(new window)
 Abstract
The metabolic response of Labeo rohita to thermal acclimation was assessed. Advanced fingerlings of L. rohita (average weight ) were acclimated to 31, 33 and compared with ambient temperatures () for 30 days and different enzymes associated with stress response were estimated. Glycolytic enzyme-Lactate dehydrogenase, (LDH, E.C.1.1.1.27), TCA cycle enzyme-Malate dehydrogenase (MDH, E.C.1.1.1.37), Protein metabolizing enzymes-Aspartate amino transferase (AST, E.C.2.6.1.1) and Alanine amino transferase (ALT, E.C.2.6.1.2) of liver, gill and muscle, Gluconeogenic enzymes-Fructose 1,6 Bi phosphatase (FBPase, E.C. 3.1.3.11) and Glucose 6 phosphatase (G6Pase, E.C. 3.1.3.9) of liver and kidney were significantly (p<0.05) different with increasing acclimation temperatures. Heat Shock Protein-70 (HSP-70) was expressed in increasing intensity at 31, 33 and but was not expressed at . Results suggest that higher acclimation temperatures enhance metabolism and L. rohita maintains homeostasis between via an acclimation episode. Such adaptation appears to be facilitated by resorting to gluconeogenic and glycogenolytic pathways for energy mobilization and induction of HSPs.
 Keywords
Thermal Acclimation;Labeo rohita;Metabolic Activities;Heat Shock Protein 70;
 Language
English
 Cited by
1.
Beneficial Effects of Dietary Probiotics Mixture on Hemato-Immunology and Cell Apoptosis of Labeo rohita Fingerlings Reared at Higher Water Temperatures, PLoS ONE, 2014, 9, 6, e100929  crossref(new windwow)
2.
Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78, Cell Stress and Chaperones, 2015, 20, 1, 73  crossref(new windwow)
3.
Effects of cadmium exposure on the gill proteome of Cottus gobio: Modulatory effects of prior thermal acclimation, Aquatic Toxicology, 2014, 154, 87  crossref(new windwow)
4.
Stress mitigating and immunomodulatory effect of dietary pyridoxine inLabeo rohita(Hamilton) fingerlings, Aquaculture Research, 2009  crossref(new windwow)
5.
Dietary choline, betaine and lecithin mitigates endosulfan-induced stress in Labeo rohita fingerlings, Fish Physiology and Biochemistry, 2012, 38, 4, 989  crossref(new windwow)
6.
High dietary protein combats the stress of Labeo rohita fingerlings exposed to heat shock, Fish Physiology and Biochemistry, 2011, 37, 4, 1005  crossref(new windwow)
7.
Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures, Journal of Thermal Biology, 2017, 65, 32  crossref(new windwow)
8.
Role of HSP70 in cytoplasm protection against thermal stress in rohu, Labeo rohita, Fish & Shellfish Immunology, 2014, 41, 2, 294  crossref(new windwow)
9.
Nutritional evaluation of fermented Jatropha protein concentrate inLabeo rohitafingerlings, Aquaculture Nutrition, 2015, 21, 1, 33  crossref(new windwow)
10.
Dietary supplementation of l-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings, Aquaculture, 2009, 293, 3-4, 272  crossref(new windwow)
11.
Combined Effect of Heat Shock and Chlorine Fails to Elicit Acquired Thermal Tolerance in Labeo rohita Spawns, Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2016, 86, 3, 537  crossref(new windwow)
12.
The potential for using enzymatic assays to assess the health of turkeys, World's Poultry Science Journal, 2016, 72, 03, 535  crossref(new windwow)
13.
Dietary microbial levan enhances tolerance of Labeo rohita (Hamilton) juveniles to thermal stress, Aquaculture, 2010, 306, 1-4, 398  crossref(new windwow)
14.
Effects of dietary pyridoxine on haemato-immunological responses ofLabeo rohitafingerlings reared at higher water temperature, Journal of Animal Physiology and Animal Nutrition, 2012, 96, 4, 581  crossref(new windwow)
15.
Haemato-immunological and stress responses of Labeo rohita (Hamilton) fingerlings: effect of rearing temperature and dietary gelatinized carbohydrate, Journal of Animal Physiology and Animal Nutrition, 2011, 95, 5, 653  crossref(new windwow)
16.
Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Günther), Fish Physiology and Biochemistry, 2012, 38, 4, 919  crossref(new windwow)
17.
Biochemical and stress responses of rohuLabeo rohitaand mrigalCirrhinus mrigalain relation to acclimation temperatures, Journal of Fish Biology, 2009, 74, 7, 1487  crossref(new windwow)
18.
Short-term exposure to higher temperature triggers the metabolic enzyme activities and growth of fishLabeo rohitafed with high-protein diet, Aquaculture Nutrition, 2013, 19, 2, 186  crossref(new windwow)
19.
Stress mitigating and growth enhancing effect of dietary tryptophan in rohu (Labeo rohita, Hamilton, 1822) fingerlings, Fish Physiology and Biochemistry, 2014, 40, 5, 1325  crossref(new windwow)
 References
1.
Baroudy, E. and J. M. Elliott. 1994. Tolerance of parr of Arctic charr, Salvelinus alpinus to reduce dissolved oxygen concentrations. J. Fish. Biol. 44:736-738 crossref(new window)

2.
Beitinger, T. L., W. A. Bennett and R. W. McCauley. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Env. Biol. Fish. 58: 237-275 crossref(new window)

3.
Bennett, W. A. and T. L. Beitinger. 1997. Temperature tolerance of the sheepshead minnow, Cyprinodon variegates. Copeia. 1997:77-87

4.
Blatter, D. P., F. Garner, K. Van Slyke and A. Bradley. 1972. Quantitative electrophoresis in polyacrylamide gels of 2-40%. J. Chromato. 64:147-155 crossref(new window)

5.
Chatterjee, N., A. K. Pal, S. M. Manush, T. Das and S. C. Mukherjee. 2004. Thermal tolerance and metabolic status of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures. J. Therm. Biol. 29:265-270 crossref(new window)

6.
Chung, M. K., J. H. Choi, Y. K. Chung and K. M. Chee. 2005. Effects of dietary vitamins C and e on eggshell quality of broiler breeder hens exposed to heat stress. Asian-Aust. J. Anim. Sci. 18(4):545-551

7.
Currie, S., C. D. Moyes and B. L. Tufts. 2000. The effects of heat shock and acclimation temperature on HSP70 and HSP30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J. Fish. Biol. 56:398-408 crossref(new window)

8.
Das, T., A. K. Pal, S. K. Chakraborty, S. M. Manush, N. Chatterjee and S. C. Mukherjee. 2004. Thermal tolerance and oxygen consumption of Indian Major Carps acclimated to four different temperatures. J. Therm. Biol. 29:157-163 crossref(new window)

9.
Das, T., A. K. Pal, S. K. Chakraborty, S. M. Manush, N. P. Sahu and S. C. Mukherjee. 2005. Thermal tolerance, growth and oxygen consumption of Labeo rohita fry (Hamilton, 1822) acclimated to four temperatures Journal of Thermal Biology. 30(5):378-383 crossref(new window)

10.
Dietz, T. J. and G. N. Somero. 1992. The threshold induction temperature of the 90 kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (Gillichhys). In proceedings of National Academy of Science. USA. 89:3389- 3393

11.
Feder, M. E. and G. E. Hofmann. 1999. Heat shock proteins, molecular chaperons, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243-282 crossref(new window)

12.
Feige, U., R. Morimoto, I. Yahara and B. S. Polla. 1996. Stressinducible cellular responses Birkhauser-Verlag. Basel, Switzerland, p. 492

13.
Forsyth, R. B., E. P. M. Candido, S. L. Babich and G. K. Iwama. 1997. Stress protein expression in Coho salmon with bacterial kidney disease. J. Aqua. Anim. Health. 9:18-25 crossref(new window)

14.
Freeland, R. A. and A. L. Harper. 1959. The study of metabolic pathway by means of adaptation. J. Biol. Chem. 234:1350-1354

15.
Guderley, H. 1990. Functional significance of metabolic responses to thermal acclimation in fish muscle. Am. J. Physiol. 259:245-252

16.
Hayford, Y. T., K. Sato, K. Takahashi, M. Toyomizu and Y. Akiba. 2002. Effects of Heat Stress and Dietary Tryptophan on Performance and Plasma Amino Acid Concentrations of Broiler Chickens. Asian-Aust. J. Anim. Sci. 15(2):247-253

17.
Hutchinson, K. A., K. D. Ditmar, M. J. Czar and W. B. Pratt. 1994. Proof that HSP70 is required for assembly of glucocorticoid receptor into a heterocomplex with HSP90. J. Biol. Chem. 269:5043-5049

18.
Iwama, G. K., P. T. Thomas, R. B. Forsyth and M. M. Vijayan. 1998. Heat shock protein expression in fish. Rev. Fish Biol. Fish. 8:1-22

19.
Iwama, G. K., M. M. Vijayan, R. B. Forsyth and P. A. Ackerman. 1999. Heat shock proteins and physiological stress in fish. Am. Zool. 39:901-909

20.
Kita, J., S. Tsuchida and T. Setoguma. 1996. Temperature preferance and tolerance, and oxygen consumption of the marbled rock-fish, Sebastiscus marmoratus. Mar. Biol. 125:467-471

21.
Kutty, M. N. 1981. Energy metabolism in mullet. In: Aquaculture of grey mullets. (Ed. O. H. Oven). pp. Cambridge University Press, London, pp. 219-253

22.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685 crossref(new window)

23.
Lowry, O. H., N. J. Ronebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with Folin Phenol Reagent. J. Biol. Chem. 193:265-276

24.
Manush, S. M., A. K. Pal, N. Chatterjee, T. Das and S. C. Mukherjee. 2004. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. J. Therm. Biol. 29:15-19 crossref(new window)

25.
Marjoic, A. S. 1964. Methods in Enzymology. Vol. II. (S. P. Colowick and N. O. Kaplan). Academic Press Inc, New York, p. 541

26.
Milligan, C. L. and S. S. Girard. 1993. Lactate metabolism in rainbow trout. J. Experi. Biol. 180:175-193

27.
Minier, C., V. Borghi, M. N. Moore and C. Porte. 2000. Seasonal variation of MXR and stress proteins in the common mussels, Mytillus galloprovincialis. Aquat. Toxicol. 50:167-176 crossref(new window)

28.
Ming, Y. C., S. Y. Huang, E. C. Lin, T. H. Hseu and W. C. Lee. 2003. Association of a Single Nucleotide Polymorphism in the 5'-Flanking Region of Porcine HSP70.2 with Backfat Thickness in Duroc Breed. Asian-Aust. J. Anim. Sci. 16(1):100-103

29.
Moon, T. W. and G. D. Foster. 1995. Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Metabolic and Adaptational Biochemistry. (Ed. P. W. Hochachka and T. P. Mommsen). Amsterdam, Elsevier Science, pp. 65-100

30.
Ochoa, 1955. Malic dehydrogenase and 'malic' enzyme. In: Methods of enzymology (Ed. I. S. P. Coloric and Kaplan). Academic Press, New York, pp. 735-745

31.
Pal, A. K. and S. C. Mukherjee. 2003. Heat shock Protein Expression in Fish and Shellfish: Environmental Perspectives and Health Management. In: Biotechnology in Environemntal Management. (T. Chakrabrti, T. K. Ghosh and G. Tripathi). APH Publishers, New Delhi, pp. 95-116

32.
Palmisano, N. A., J. R. Winton and W. W. Dickhoff. 2000. Tissuesspecific induction of HSP 90 mRNA and plasma cortisol response in Chinook Salmon following heat shock, sea water challenge and handling challenge. Mar. Biotechnol. 2:329-338

33.
Paromita, D., G. Akhil and K. M. Sanjib. 2005. Heat shock protein 70 expression in different tissues of Cirrhinus mrigala (Ham.) following heat stress. Agric. Res. 36(6):525-529

34.
Renukardhyay, K. M. and T. J. Varghese. 1986. Protein requirement of the carps Catla catla and Labeo rohita (Ham.). Proc. Indian Acad. Sci. (Anim. Sci.), 95:103-107

35.
Sanders, B. M. 1993. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol. 23:49-75 crossref(new window)

36.
Schlesinger, M. J., M. Ashburner and Tissieres. 1982. Heat Shock Proteins from Bacteria to Man, Cold Springe Harbor Lab Press, NY. pp. 243-251

37.
Suarez, R. K. and T. P. Mommsen. 1987. Gluconeogenesis in teleost fishes. Can. J. Zool. 65:1869-1882 crossref(new window)

38.
Sudarman, A. and T. Ito. 2000. Heat Production and Thermoregulatory Responses of Sheep Fed Different Roughage Proportion Diets and Intake Levels When Exposed to a High Ambient Temperature. Asian-Aust. J. Anim. Sci. 13(5):625-629

39.
Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceed. Nat. Acad. Sci. USA. 76(9):4350-4354

40.
Vijayan, M. M., J. S. Ballantyne and J. F. Leatherland. 1990. High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquac. 88:371-381 crossref(new window)

41.
Vijayan, M. M., C. Pereira, E. G. Grau and G. K. Iwama. 1997. Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp. Biochem. Physiol. 116C:89-95

42.
Wedemeyer, G. R., F. P. Meyer and L. Smith. 1999. Environmental stress and Fish diseases. Narendra Publ. House, Delhi, India, p. 107

43.
Werner, I., C. S. Koger, J. T. Hamm and D. E. Hinton. 2001. Ontogeny of the Heat Shock Protein, HSP70 and HSP 60, Response and Development effects of Heat- Shock in the Teleost, Medaka (Oryzias latipes). Environ. Sci. 8:13-29

44.
Wotton, I. D. P. 1964. Microanalysis. In Medical Biochemistry. J. A. Churchill (4th Eds).London, pp. 101-107

45.
Wrobleuiski, L. and J. S. Ladue. 1955. LDH activity in blood. Proc. Soc. Exp. Biol. Med. 90:210-213

46.
Zulkifli, I., S. A. Mysahra and L. Z. Jin. 2004. Dietary supplementation of betaine (betafin) and response to high temperature stress in male broiler chickens. Asian-Aust. J. Anim. Sci. 17(2):244-249