Advanced SearchSearch Tips
The Genetic Diversity of Trans-caucasian Native Sheep Breeds
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Genetic Diversity of Trans-caucasian Native Sheep Breeds
Hirbo, Jibril; Muigai, Anne; Naqvi, A.N.; Rege, E.D.; Hanotte, Olivier;
  PDF(new window)
The genetic variation in 10 indigenous Caucasian sheep breeds was studied with 14 micro-satellite loci in order to determine the genetic diversity among and between the breeds. Five breeds from Asia, five breeds from Europe and one breed from Africa, were included in order to study any relationships or influences they may have with the Caucasian sheep analyzed. A Karakul population from Uzbekistan was included in the study to see whether there was any Central Asian influence. All the 14 loci were found to be polymorphic in all the breeds, with the exception of ILST0056, which was monomorphic in Imeretian. A total of 231 alleles were generated from all the 688 individuals of the sheep analyzed. The mean number of alleles (MNA) at each locus was 16.5. The total number of alleles detected in all samples ranged from 13 in several loci to 23 in OarJMP029. Out of total 308 Hardy-Weinberg Equilibrium (HWE) tests, 85 gave significant results. After Bonferroni correction for multiple tests, 30 comparisons still remained significant to the experimental levels. The Gala population was the most diverse and Imeretian the least diverse with a MNA of 8.50 and 5.51, respectively. Gene diversity estimates exhibited the same trend and ranged from 0.803 in Gala and 0.623 in Imeretian, but generally there is higher diversity among the Caucasian breeds in comparison to other eference breeds. The closest breeds were Tushin and Bozakh with Da of 0.113 and most distant breeds were and North Rondalsy with Da of 0.445. Principal Component (PC) analyses were done. PC1 described 14% of the differences. PC2, which described 13% of the differences, further separated the Caucasian breeds from Asian breeds except Karakul and Awasi, and the two British breeds. PC3 described 10% of the differences, allowing better differentiation of the Caucasian breeds. A moderate degree of reliability was observed for individual-breed assignment from the 14 loci using different approaches among which the Bayesian method proved to be the most efficient. About 72% of individuals analyzed were correctly assigned to their respective breeds.
 Cited by
Arranz, J. J., Y. Bayon and F. San Primitivo. 1998. Genetic relationships among Spanish sheep using Micro-satellites. Anim. Genet. 29:435-440 crossref(new window)

Barton, N. H. and M. Slatkin. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56(Pt 3):409-415 crossref(new window)

Brezinsky, L., S. J. Kemp and A. J. Teale. 1993. Five polymorphic bovine Micro-satellites (ILSTS010-014). Anim. Genet. 24:75-76

Buchanan, F. C., L. J. Adams, R. P. Littlejohn, J. F. Maddox and A. M. Crawford. 1994. Determination of evolutionary relationships among sheep breeds using Micro-satellites. Genomics 22:397-403 crossref(new window)

Buchanan, F. C., S. M. Galloway and A. M. Crawford. 1994b. Ovine Micro-satellites at the OarFCB5, OarFCB19, OarFCB20, OarFCB48, OarFCB129 and OarFCB226 loci. Anim. Genet. 25:60

Cavalli-Sforza, L. L. M. and P. A. Pa. 1994. The history and geography of human genes Princeton University Press, Princeton

Chakraborty RaJ, L. 1993. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distance. In: DNA fingerprinting: state of the science (Ed. S. D. Pena, J. C. R. Epplen and A. J. Jeffreys), pp. 153-175. Birkhauser, Basel

Cornuet, J. M., S. Piry, G. Luikart, A. Estoup and M. Solignac 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genet. 153: 1989-2000

Diez-Tascon, C., R. P. Littlejohn, P. A. Almeida and A. M. Crawford. 2000. Genetic variation within the Merino sheep breed: analysis of closely related populations using Microsatellites. Anim. Genet. 31:243-251 crossref(new window)

Dimitriev NGaE, L. K. 1989. Animal genetic resources of the USSR, pp. 205-254. FAO, Rome

Hancock, J. M. 1999. Micro-satellites and other simple sequences: genomic contect and mutational mechanisms. In: Microsatellites: Evolution and Applications (Ed. Goldstein DBaS, C), pp. 1-9. Oxford University Press, New York

Hartl DLaC, A. G. 1989. Principles of Population Genetics, 2nd edn. Sinauer Associates Inc., Sunderland, Massachusetts

Heyen, D. W., J. E. Beever and Y. Da. 1997. Exclusion probabilities of 22 bovine Micro-satellite markers in fluorescent multiplexes for semiautomated parentage testing. Anim. Genet. 28:21-27 crossref(new window)

Hulme, D. J., J. P. Silk, J. M. Redwin, W. Barendse and K. J. Beh. 1994. Ten polymorphic ovine Micro-satellites. Anim. Genet. 25: 434-435

Janson, K. 1987. Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biol. J. Linn. Society 30:245-256 crossref(new window)

Kemp, S. J., L. Brezinsky and A. J. Teale. 1993. A panel of bovine, ovine and caprine polymorphic Micro-satellites. Anim. Genet. 24:363-365

Kemp, S. J., O. Hishida and J. Wambugu. 1995. A panel of polymorphic bovine, ovine and caprine Micro-satellite markers. Anim. Genet. 26:299-306

Luikart, G., M. P. Biju-Duval and O. Ertugrul. 1999. Power of 22 Micro-satellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim. Genet. 30:431-438 crossref(new window)

Lumsden, J. M., E. A. Lord and G. W. Montgomery. 1996. Characterization and linkage mapping of ten sheep Microsatellite markers derived from a sheep$\times$hamster cell hybrid. Anim. Genet. 27:203-206

Moore, S. S. S., T. J. King, M. Mattick and D. J. S. Hetzel. 1991. The Conservation of dinucleotide Micro-satellites among mammalian genomes allows the use of heterologous primer pairs in closely related species. Genomics 10:654-660 crossref(new window)

Muigai, A. W. W., J. Hirbo, M. Imbuga, L. Iniguez, S. Kemp, O. Hanotte and J. E. O. Rege. 2000. Assessment of the genetic diversity and relationships among African fat-tailed sheep: Preliminary results

Nasidze, I., G. M. Risch and M. Robichaux. 2001. Alu insertion polymorphisms and the genetic structure of human populations from the Caucasus. Eur. J. Hum. Genet. 9:267-272 crossref(new window)

Nasidze, I. and M. Stoneking. 2001. Mitochondrial DNA variation and language replacements in the Caucasus. Proc. R. Soc. Lond. B Biol. Sci. 268:1197-1206

Nasidze, I. S. 1995. Genetic polymorphisms of the Caucasus ethnic groups: distribution of some blood group genetic markers (Part II). Gene. Geogr. 9:117-167

Nei, M., F. Tajima and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J. Mol. Evol. 19:153-170 crossref(new window)

Ota, T. 1993. Dispan: Genetic Distance and Phylogenetic Analysis. Pennsylvania State University, Pennsylvania

Page RDM. 1996. Treeview: an application to display phylogenetic trees in personal computers. Computer Applications in the Biosciences. 12:357-358

Penty, J. M., H. M. Henry, A. J. Ede and A. M. Crawford. 1993. Ovine Micro-satellites at the OarAE16, OarAE54, OarAE57, OarAE119 and OarAE129 loci. Anim. Genet. 24:219

Rannala, B. and J. L Mountain. 1997. Detecting immigration by using multilocus genotypes. Proc. Nat. Acad. Sci. USA 94: 9197-9201

Raymond, MaR. F. 1995. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86:248-249

Ryder, M. L. 1983. Sheep and Man Duckworth, London

Sambrook, J. F. and T. Maniatis. 1989. Molecular cloning: A Laboratory Manual Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY

Scherf, B. D. 2000. World Watch List: for domestic animals. pp. 163, 513. FAO/UNEP, Rome

Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Sci. 236:787-792 crossref(new window)

Stallings, R. L., A. F. Ford and D. Nelson. 1991. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genom. 10:807-815 crossref(new window)

Trexler, J. C. 1988. Hierarchical organisation of genetic variation in the sailfin molly, Poecilia latipinna (Pisces poeciliidae). Evol. 42:1006-1017 crossref(new window)

Uerpmann, H. P. 1996. Animal domestication - accident or intention. In: The Origins and Spread of Agriculture and Pastoralism in Eurasia (Ed. D. R. Harris), pp. 227-237. University College London Press, London

Yoon, D. H., H. S. Kong, J. D. Oh, J. H. Lee, B. W. Cho, J. D. Kim, K. J. Jeon, C. Y. Jo, C. G. Jeon and H. K. Lee. 2005. Establishment of an individual identification System Based on Micro-satellite Polymorphism in Korean Cattle. Asian- Aust. J. Anim. Sci. 18(6):762-777

Weir, B. S. C. 1984. Estimating F-statistics for the analysis of population structure. Evol. 38:1358-1370 crossref(new window)

Wilson, I. J. and D. J. Balding. 1998. Genealogical Inference from Microsatellte Data. Genet. 150:499-510

Wright, S. 1969. Evolution and the Genetics of Populations Vol. 2 The Theory of Gene Frequencies University of Chicago Press, Chicago