Advanced SearchSearch Tips
Mapping of the Porcine Calpastatin Gene and Association Study of Its Variance with Economic Traits in Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Mapping of the Porcine Calpastatin Gene and Association Study of Its Variance with Economic Traits in Pigs
Choi, B.H.; Lee, J.S.; Jang, G.W.; Lee, H.Y.; Lee, J.W.; Lee, K.T.; Chung, H.Y.; Park, H.S.; Oh, S.J.; Sun, S.S.; Myung, K.H.; Cheong, I.C.; Kim, T.H.;
  PDF(new window)
The objectives of this study were to confirm a location of the calpastatin (CAST) gene in chromosome 2 and to detect associations of genetic variations with economic traits in the porcine CAST gene as a candidate gene for growth and meat quality traits in pigs. Calpastatin is a specific endogenous inhibitor of calpains. The calpain protease system is ubiquitous, and is involved in numerous growth and metabolic processes. Three single nucleotide variations were identified within a 1.6 kb fragment of the porcine CAST gene and these polymorphisms were used for genetic linkage mapping. Linkage and QTL mapping were performed with the National Livestock Research Institute (NLRI) reference families using eight microsatellites and SNP makers in the CAST gene. The porcine CAST gene was mapped adjacent to the markers, SW395 and SW1695 on SSC2 with LOD scores of 15.32 and 8.50, respectively. According to the QTL mapping, a significant association was detected at 82 cM between SW395 and CAST-Hinf I for weight at the age of 30 weeks. In addition, an association study was performed with the animals of NLRI reference families for Hinf I, Msp I and Rsa I polymorphisms in the CAST gene. Two polymorphisms, CAST-Rsa I and CAST-Hinf I, showed significant correlation for growth traits at p<0.01 and p<0.05, respectively.
Calpastatin (CAST);Linkage Mapping;QTL Mapping;Korean Native Pig;
 Cited by
Evaluation of Reciprocal Cross Design on Detection and Characterization of Non-Mendelian QTL in $F_2$ Outbred Populations: I. Parent-of-origin Effect,Lee, Yun-Mi;Lee, Ji-Hong;Kim, Jong-Joo;

Asian-Australasian Journal of Animal Sciences, 2007. vol.20. 12, pp.1805-1811 crossref(new window)
Evaluation of Reciprocal Cross Design on Detection and Characterization of Mendelian QTL in $F_2$ Outbred Populations,Lee, Yun-Mi;Kim, Eun-Hee;Kim, Jong-Joo;

Asian-Australasian Journal of Animal Sciences, 2007. vol.20. 11, pp.1625-1630 crossref(new window)
Developmental Proteomic Profiling of Porcine Skeletal Muscle during Postnatal Development,Kim, Nam-Kuk;Lim, Jong-Hyun;Song, Min-Jin;Kim, Oun-Hyun;Park, Beom-Young;Kim, Myung-Jick;Hwang, In-Ho;Lee, Chang-Soo;

Asian-Australasian Journal of Animal Sciences, 2007. vol.20. 10, pp.1612-1617 crossref(new window)
Association of CAST Gene Polymorphisms with Carcass and Meat Quality Traits in Chinese Commercial Cattle Herds,Li, Jiao;Zhang, Lu-Pei;Gan, Qian-Fu;Li, Jun-Ya;Gao, Hui-Jiang;Yuan, Zheng-Rong;Gao, Xue;Chen, Jin-Bao;Xu, Shang-Zhong;

Asian-Australasian Journal of Animal Sciences, 2010. vol.23. 11, pp.1405-1411 crossref(new window)
Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits,Kim, E.H.;Choi, B.H.;Kim, K.S.;Lee, C.K.;Cho, B.W.;Kim, T.-H.;Kim, J.-J.;

Asian-Australasian Journal of Animal Sciences, 2007. vol.20. 5, pp.669-676 crossref(new window)
Detection of Mendelian and Parent-of-origin Quantitative Trait Loci for Meat Quality in a Cross between Korean Native Pig and Landrace,Choi, B.H.;Lee, Y.M.;Alam, M.;Lee, J.H.;Kim, T.H.;Kim, K.S.;Kim, J.J.;

Asian-Australasian Journal of Animal Sciences, 2011. vol.24. 12, pp.1644-1650 crossref(new window)
Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm, I. Hansson, J. Hakansson and K. Lundstrom. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Sci. 263:1771-1774 crossref(new window)

Barnoy, S., T. Glaser and N. S. Kosower. 1996. The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochem. Biophysic. Res. Comun. 220:933-938 crossref(new window)

Choi, B. H., B. J. Ahn, K. Kook, S. S. Sun, K. H. Myung, S. J. Moon and J. H. Kim. 2002. Effect of feeding patterns and sexes on growth rate, carcass trait and grade in Korean Native Cattle. Asian-Aust. J. Anim. Sci. 15:838-843

Choy, Y. H., G. J. Jeon, T. H. Kim, B. H. Choi, I. C. Cheong, H. K. Lee, K. S. Seo, S. D. Kim, Y. I. Park and H. W. Chung. 2002. Genetic analyses of carcass characteristics in crossbred pigs: Cross between Landrace and Korean wild boars. Asian-Aust. J. Anim. Sci. 15:1080-1084

Ernst, C. W., A. Robic, M. Yerle, L. Wang and M. F. Rothschild. 1998. Mapping of calpastatin and three microsatellites to porcine chromosome 2q2.1-q2.4. Anim. Genet. 29:212-215 crossref(new window)

Goll, D. E., V. F. Thompson, H. Li, W. Wei and J. Cong. 2003. The Calpain System. Physiological review. 83:731-801

Green, P., K. Falls and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington Univ. School of Medicine, St. Louis, MO

Kim, T. H., B. H. Choi, H. K. Lee, H. S. Park, H. Y. Lee, D. H. Yoon, J. W. Lee, G. J. Jeon, I. C. Cheong, S. J. Oh and J. Y. Han. 2005. Identification of Quantitative traits loci (QTL) affecting growth traits in pigs. Asian-Aust. J. Anim. Sci. 18:1524-1528

Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K. Lundstrom, M. Moller and L. Andersson. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genet. 149:1069-1080

Koohmaraie, M., G.. Whipple, D. H. Kretchmar, J. D. Crouse and H. J. Mersmann. 1991. Postmortem proteolysis in longissimus muscle from beef, lamb and pork carcasses. J. Anim. Sci. 69:617-624

Kretchmar, D. H., M. Koohmaraie and H. J. Mersmann. 1994. Comparison of proteolytic variables in a lean and obese strain of pig at the ages of 2.5 and 7 months. Lab. Anim. Sci. 44:38-41

Kristensen, L., M. Therkildsen, B. Riis, M. T. Sorensen, N. Oksbjerg, P. P. Purslow and P. Ertbjerg. 2002. Dietary-induced change of muscle growth rate in pigs: Effects on in vivo and postmortem muscle proteolysis and meat quality. J. Anim. Sci. 80:2862-2871

Lee, H. K., S. S. Lee, T. H. Kim, G. J. Jeon, H. W. Jung, Y. S. Shin, J. Y. Han, B. H. Choi and I. C. Cheong. 2003. Detection of imprinted Quantitative Trait Loci (QTL) for Growth Traits in Pigs. Asian-Aust. J. Anim. Sci. 16:1087-1092

Moeller, S. J., T. J. Baas, T. D. Leeds, R. S. Emnett and K. M. Irvin. 2003. Rendement Napole gene effects and a comparison of glycolytic potential and DNA genotyping for classification of Rendement Napole status in Hampshire-sired pigs. J. Anim. Sci. 81:402-410

Paszek, A. A., P. J. Wilkie, G. H. Flickinger, G. A. Rohrer, L. J. Alexander, C. W. Beattie and L. B. Schook. 1999. Interval mapping of growth in divergent swine cross. Mamm. Genome 10:117-122 crossref(new window)

Rohrer, G. A., L. J. Alexander, Z. Hu, T. P. L. Smith, J. W. Keele and C. W. Beattie. 1996. A comprehensive map of the porcine genome. Genome Res. 6:371-391 crossref(new window)

Seaton, G.., C. S. Haley, S. A. Knott, M. Kearsey and P. M. Visscher. 2002. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics Applications Note. 18:339-340

Sensky, P. L., T. Parr, R. G. Bardsley and P. J. Buttery. 1996. The relationship between plasma epinephrine concentration and the activity of the calpain enzyme system in porcine longissimus muscle. J. Anim. Sci. 74:380-387

Zhang, W., C. Haley and C. Moran. 1995. Alignment of the PiGMaP and USDA linkage maps for porcine chromosomes 2 and 5. Anim. Genet. 26:361-364