Advanced SearchSearch Tips
Breed Discrimination Using DNA Markers Derived from AFLP in Japanese Beef Cattle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Breed Discrimination Using DNA Markers Derived from AFLP in Japanese Beef Cattle
Sasazaki, S.; Imada, T.; Mutoh, H.; Yoshizawa, K.; Mannen, H.;
  PDF(new window)
In the meat industry, correct breed information in food labeling is required to assure meat quality. Genetic markers provide corroborating evidence to identify breed. This paper describes the development of DNA markers to discriminate between Japanese Black and F1 (Japanese BlackHolstein) breeds. The amplified fragment length polymorphism method was employed to detect candidate markers absent in Japanese Black but present in Holstein. The 1,754 primer combinations yielded eleven markers that were converted into single nucleotide polymorphism markers for high-throughput genotyping. The allele frequencies in both breeds were investigated for discrimination ability using PCR-RFLP. The probability of identifying F1 was 0.9168 and probability of misjudgment was 0.0066 using four selected markers. The markers could be useful for discriminating between Japanese Black and F1 and would contribute to the prevention of falsified breed labeling of meat.
AFLP;Breed Discrimination;Beef Cattle;Japanese Black;Holstein;
 Cited by
Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215(3):403-410 crossref(new window)

Alves, E., C. Castellanos, C. Ovilo, L. Silio and C.Rodriguez. 2002. Differentiation of the raw material of the Iberian pig meat industry based on the use of amplified fragment length polymorphism. Meat Sci. 61:157-162 crossref(new window)

Brugmans, B., R. G. Van Der Hulst, R. G. Visser, P. Lindhout and H. J. Van Eck. 2003. A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res. 31(10):e55 crossref(new window)

Devic, M., S. Albert, M. Delseny and J. T. Roscoe. 1997. Efficient PCR walking on plant genomic DNA. Plant Physiol. Bioch. 35(4):331-339

Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genet. 131:479-491

Negi, M. S., M. Devic, M. Delseny and M. Lakshmikumaran. 2000. Identification of AFLP fragments linked to seed coat colour in Brassia Juncea and conversion to a SCAR marker for rapid selecton. Theor. Appl. Genet. 101:146-152 crossref(new window)

Olowofeso, O., J. Y. Wang, J. C. Shen, K. W. Chen, H. W. Sheng, P. Zhang and R. Wu. 2005. Estimation of the Cumulative Power of Discrimination in Haimen Chicken Populations with Ten Microsatellite Markers. Asian-Aust. J. Anim. Sci. 18:1066-1070 crossref(new window)

Sasazaki, S., K. Itoh, S. Arimitsu, T. Imada, A. Takasuga, H. Nagaishi, S, Takano, H. Mannen and S. Tsuji. 2004. Development of breed identification markers derived from AFLP in beef cattle. Meat Sci. 67:275-280 crossref(new window)

Slatkin, M. and L. Excoffier. 1996. Testing for linkage disequilibrium in genotypic data using the Expectation-Maximization algorithm. Heredity 76:377-383 crossref(new window)

Schneider, S., J. M. Kueffer, D. Roessli and L. Excoffier. 1997. Arlequin ver. 1.1: A software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. V. D. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau. 1995. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res. 21:4407-4414