JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Study on Changes in Racehorses' Metabolites and Exercise-related Hormones before and after a Race
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Study on Changes in Racehorses' Metabolites and Exercise-related Hormones before and after a Race
Yoo, In-Sang; Lee, Hong-Gu; Yoon, Sei-Young; Hong, Hee-Ok; Lee, Sang-Rak;
  PDF(new window)
 Abstract
Physiological changes in thoroughbred racehorses during the race were investigated by measuring concentrations of metabolites and exercise-related hormones before and after a race. The conversion point from anaerobic to aerobic exercise during the race was estimated subsequently. Blood samples were taken from the jugular vein of 53 thoroughbreds at different times -three h before and 45 min after- for measuring the concentrations of glucose, non-esterified fatty acids (NEFA), lactate, uric acid, ammonia, insulin, adrenocorticotrophin (ACTH) and cortisol according to the race distance. In accordance with the race distance, each metabolite increased in concentration compared with the level before the race. The level of glucose, in particular, increased from mg/dl before the race to mg/dl after the race for horses that raced 1,400 m, showing a significant increase of 165% (p<0.001). The concentration of NEFA rose from uEq/L to uEq/L, up 337% (p<0.01) after a 1,400 m race. Exercise-related hormones also showed similar changes. The level of insulin dropped the most in horses that raced 1,400 m, by 42%, from to (p<0.5); however, ACTH and cortisol jumped significantly at 1,800 m, from to pg/ml (p<0.5) and to (p<0.01), respectively, representing the highest increase. Therefore, based on the changes in glucose, NEFA and insulin levels before and after the race, it was concluded that the race distance of 1,400 m represents the point where racehorses make a conversion from anaerobic to aerobic exercise.
 Keywords
Thoroughbred;Race;Race Distance;Metabolites;Hormones;
 Language
English
 Cited by
 References
1.
Buono, M. J., J. E. Yearger and J. A. Hodgdon. 1986. Plasma adrenocorticotropin and cortisol responses to brief highintensity exercise in humans. J. Appl. Physiol. 61:1337-1339.

2.
Davie, A. J. and D. L. Evans. 2000. Blood lactate responses to submaximal field exercise tests in Thoroughbred horses. Vet. J. 159:252-258. crossref(new window)

3.
Devlin, J., J. Barlow and E. Horton. 1989. Whole body and regional fuel metabolism during early post exercise recovery. Am. J. Physiol. 256:E167-E172.

4.
Engelhardt, W., H. Hornicke, J. H. Ehrlein and E. Schmidt. 1973. Lactat, pyruvat, glucose und wasserstoffionen im venosen blut bei reitpferden in unterschiedlichem trainingszustand. Zentbl. Vet. Med. (A) 20:173-187.

5.
Erik, A. R., W. Derave and J. F. P. Wojtaszewski. 2001. Topical Review; Glucose, exercise and insulin: emerging concepts. J. Physiol. 535:313-322. crossref(new window)

6.
Evans, D. L., R. C. Harris and D. H. Snow. 1993. Correlation of racing performance with blood lactate and heart rate after exercise in Thoroughbred horses. Equine Vet. J. 25:441-445. crossref(new window)

7.
Farrell, P. A., T. L. Garthwaite and A. B. Gustafson. 1983. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J. Appl. Physiol. 55:1441-1444.

8.
Harkins, J. D., R. E. Beadle and S. G. Kamerling. 1993. The correlation of running ability and physiological variables in Thoroughbred racehorses. Equine Vet. J. 25:53-60. crossref(new window)

9.
Harris, R. C., D. J. Marlin and D. H. Snow. 1987. Metabolic response to maximal exercise of 800 and 2,000 m in the thoroughbred horse. J. Appl. Physiol. 63:12-19.

10.
Hinchcliff, K. W., M. A. Lauderdale, J. Dutson, R. J. Geor and V. A. Lancombe. 2002. High intensity exercise conditioning increases accumulated oxygen deficit of horses. Equine Vet. J. 34:6-7. crossref(new window)

11.
Irvine, C. H. G. 1983. The role of hormones in exercise physiology. In 'Equine Exercise Physiology' (Ed. D. H. Snow, S. G. B. Persson, R. J. Rose). Granta Editions, Cambridge, pp. 377-388.

12.
Inoue, Y., T. Osawa, A. Matsui, Y. Asai, Y. Murakami, T. Matsui and H. Yano. 2002. Changes of serum mineral concentrations in horses during exercise. Asian-Aust. J. Anim. Sci. 15(4):531-536.

13.
Ju, J. C., Y. K. Fan and J. C. Hsu. 2002. The effects of endurance training on the hemogram of the horse. Asian-Aust. J. Anim. Sci. 15(9):1348-1353.

14.
Karen, L. S., P. M. John and J. B. Eldon. 2006. Inhibition of lipolysis does not affect insulin sensitivity to glucose uptake in the mourning dove. Comparative Biochemistry and physiology, Part B 144:387-394. crossref(new window)

15.
Keenan, D. M. 1978. Changes in plasma uric acid levels in horses after galloping. Res. Vet. Sci. 25:127-128.

16.
Kjaer, M., C. Hollenbeck, B. Frey-Hewitt, H. Galbo, W. Haskell and G. Reaven. 1990. Glucoregulation and hormonal responses to maximal exercise in non-insulin-dependent diabetes. J. Appl. Physiol. 68:2067-2074.

17.
Kjaer, M., P. Farrell, N. Christensen and H. Galbo. 1986. Increased epinephirne resoponse and inaccurate glucoregulation in exercisign athletes. J. Appl. Physiol. 61:1693-1700.

18.
Kraemer, W. J., J. F. Patton, H. G. Knuttgen, L. J. Marchitelli, C. Cruthirds, A. Damokosh, E. Harman, P. Frykman and J. E. Dziados. 1989. Hypothalamic-pituitary-adrenal responses to short-duration high-intensity cycle exercise. J. Appl. Physiol. 66:161-167. crossref(new window)

19.
Krzywanek, H. 1973. Untersuchungen zur beurteilung det aktuellen leistungsfahigkeit von trabrennpferden. Zentbl. Vet. Med. (A) 20:265-276.

20.
Lacombe, V., K. W. Hinchliff, R. J. Geor and M. A. Lauderdale. 1999. Exercise that induces substantial muscle glycogen depletion impairs subsequent anaerobic capacity. Equine Vet. J. Sppl. 30:293-297.

21.
Lindholm, A. and B. Saltin. 1974. The physiological and biochemical response of Standardbred horses to exercise of varying speed and duration. Acta. Vet. Scand. 15:1-15.

22.
Marc, M., N. Parvizi, F. Ellendorff, E. Kallweit and F. Elsaesser. 2000. Plasma cortisol and ACTH concentration in the warmblood horse in response to a standardized treadmill exercise test as physiological markers for evaluation of training status. J. Anim. Sci. 78:1936-1946.

23.
Marion, G. A. 1975. The effect of Exercise on Blood Metabolite Levels in the Horse. Equine Vet. J. 7:27-33. crossref(new window)

24.
Mark, H. 2000. Skeletal muscle metabolism during exercise in humans. Clinic. Experim. Pharmacol. Physiol. 27:225-228. crossref(new window)

25.
Masahiko, K., N. Shun-ichi, T. Fujie, M. Kyousuke, H. Atsushi, K. Makoto and T. Kawuyoshi. 1998. Plasma Catecholamine, Adrenocorticotropin and Cortisol Response to Exhaustive Incremental Treadmill Exercise of the Thoroughbred Horse. J. Equine Sci. 9:9-18. crossref(new window)

26.
Maxwell, N. S. and M. A. Nimmo. 1996. Anaerobic capacity: a maximal anaerobic running test versus the maximal accumulated oxygen dificit. Can. J. Appl. Physiol. 21:35-47. crossref(new window)

27.
Medbo, J. I. 1993. Glycogen breakdown and lactate accumulation during high-intensity cycling. Acta. Physiol. Scand. 149:85-89. crossref(new window)

28.
Nogushige, I., S. Fumio, K. Masahiko and H. Telhisa. 1999. Changes in Serum Concentration of Uric Acid and Allantoin due to Exhaustive Treadmill Exericse. J. Euqine Sci. 10:45-48. crossref(new window)

29.
Nummela, A. and H. Rusko. 1995. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes. Intl. J. Sports Med. 16:522-527. crossref(new window)

30.
Poso, A. R., J. L. Kimmo and L. A. Rasanen. 1995. Distribution of lactate between red blood cells and plasma after exercise. Equine Vet. J. Sppl. 18:231-234.

31.
Rasanen, L. A., P. A. Wiitanen, E. M. Lilius, S. Hyyppa and A. R. Poso. 1996. Accumulation of uric acid in plasma after repeated bouts of exercise in the horse. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 114:139-144. crossref(new window)

32.
Roneus, N., B. Essen-Gustavsson and A. Lindholm. 1994. Plasma lactate response to submaximal and maximal exercise tests with training, and its relationship to performance and muscle characteristic in standardbred trotters. Equine Vet. J. 26:117-121. crossref(new window)

33.
Roneus, N., B. Essen-Gustavsson, A. Lindholm and S. Persson. 1999. Muscle characteristics and plasma lactate and ammonia response after racing in Standardbred trotters: relation to performance. Equine Vet. J. 31:170-173. crossref(new window)

34.
Rose, R. J., D. K. Hendrickson and P. K. Knight. 1990. Clinical exercise testing in the normal Thoroughbred racehorses. Aust. Vet. J. 67:345-348. crossref(new window)

35.
Saibene, F., G. Cortili, P. Gavazzi, A. Sala, M. Faina and F. Sardella. 1985. Maximal anaerobic (lactic) capacity and power of the horse. Equine Vet. J. 17:130-132. crossref(new window)

36.
Sahlin, K., M. Tonkonogi and K. Soderlund. 1998. Energy supply and muscle fatigue in humans. Acta. Physiol. Scand. 162:261-266. crossref(new window)

37.
Scott, C. B., F. B. Roby, T. G. Lohman and J. C. Bunt. 1991. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity. Med. Sci. Sprots Exerc. 23:618-624.

38.
Snow, D. H., R. C. Harris and S. Gash. 1985. Metabolic response of equine muscle to intermittent maximal exercise. J. Appl. Physiol. 58:1689-1697. crossref(new window)

39.
Streter, F. A. 1959. The effect of systemic training on plasma electrocytes, haematocrit value and blood sugar in Thoroughbred race horses. Can. J. Biochem. Physiol. 37:273-283. crossref(new window)

40.
Volkov, N. I., E. A. Shirkovets and V. E. Borilkevich. 1975. Assessment of aerobic and anaerobic capacity of athletes in treadmill running tests. Eur. J. Appl. Physiol. Occup. Physiol. 34:121-130. crossref(new window)