Advanced SearchSearch Tips
Can Exogenous Betaine Be an Effective Osmolyte in Broiler Chicks under Water Salinity Stress?
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Can Exogenous Betaine Be an Effective Osmolyte in Broiler Chicks under Water Salinity Stress?
Honarbakhsh, Shirin; Zaghari, Mojtaba; Shivazad, Mahmood;
  PDF(new window)
A CRD experiment was conducted to evaluate the effects of different exogenous betaine levels (0.000, 0.075, 0.150 and 0.225 percent) on 576 one-day-old male broiler chicks (Ross) under water salinity stress. Different levels of water salinity were made by adding 3 levels of NaCl (0, 1,000 and 2,000 mg/L) to drinking water. Feed and water were available ad libitum. Betaine increased body weight, improved feed conversion ratio, and decreased packed cell volume (p<0.05). Water salinity promoted body weight over the whole period, increased feed intake (11 to 21 and 29 to 42-d) and also improved feed conversion ratio in grower and finisher periods (p<0.01). Breast weight, water consumption (28-d and 42-d) and excreta moisture (28-d) were increased by elevating the level of water salinity (p<0.01). Interaction between dietary betaine and water salinity was significant on plasma osmolarity as well as epithelial osmolarity of the duodenum at 28-d. Epithelial osmolarity was decreased from duodenum to ileum. The data imply that betaine is involved in the protection of intestinal epithelia against osmotic disturbance which can be caused by saline water, but further research is needed to investigate the effects of betaine with higher levels of water salinity.
Broiler;Exogenous Betaine;Saline Water;Osmolytic Effect;Packed Cell Volume;Performance;
 Cited by
Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals,;;;;

아세아태평양축산학회지, 2009. vol.22. 10, pp.1461-1476 crossref(new window)
Effects of Dietary Betaine on the Secretion of Insulin-like Growth Factor-I and Insulin-like Growth Factor Binding Protein-1 and -3 in Laying Hens,;;;;;

아세아태평양축산학회지, 2010. vol.23. 3, pp.379-384 crossref(new window)
Effect of dietary betaine supplementation on the performance, carcass yield, and intestinal morphometrics of broilers submitted to heat stress, Revista Brasileira de Ciência Avícola, 2013, 15, 2, 105  crossref(new windwow)
Performance and immune response of broiler chicks as affected by different levels of total dissolved solids in drinking water under hot arid environments, Animal Production Science, 2013, 53, 4, 322  crossref(new windwow)
Response of growing goslings to dietary supplementation with methionine and betaine, British Poultry Science, 2016, 57, 6, 833  crossref(new windwow)
Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review, Tropical Animal Health and Production, 2017, 49, 7, 1329  crossref(new windwow)
Dietary betaine supplementation increases adrenal expression of steroidogenic acute regulatory protein and yolk deposition of corticosterone in laying hens, Poultry Science, 2017, 96, 12, 4389  crossref(new windwow)
AOAC. 2000. Official Methods of Analysis. 17th edn. Association of Official Analytical Chemists, Washington, DC.

Augustine, P. C., J. L. McNaughton, E. Virtanen and L. Rosi. 1997. Effects of betaine on the growth performance of chicks inoculated with mixed culture of avian Eimeria species and on invasion and development of Eimeria tenella and Eimeria acervulina in vitro and in vivo. Poult. Sci. 76:802-809. crossref(new window)

Balnave, D. and I. Gordon. 1993. A role for sodium bicarbonate supplements for growing broilers at high temperatures. World's Poult. Sci. J. 49:236-241. crossref(new window)

Britton, W. M. 1992. Effect of dietary salt intake on water and feed consumption. In: Nutrition Conference for Feed Industry. Atlanta, Georgia. United States of America. pp. 48-53.

Cera, K. R. and A. P. Schinckel. 1995. Carcass and performance responses to feeding betaine in pigs. J. Anim. Sci. 72(Suppl. 1).

Cromwell, G. L., M. D. Lindemann, J. R. Randolph, H. J. Monegue, K. M. Laurent and J. R. Parker. 1999. Efficiency of betaine as a carcass modifier in finishing pigs fed normal and reduced energy diets. J. Anim. Sci. 77(Suppl. 1):179(Abstr).

Eklund, M., E. Bauer, J. Wamatu and R. Mosenthin. 2005. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 18:31-48. crossref(new window)

Feng, J. and D. Y. Yu. 2001. Effect of betaine on growth performance and methyl transfer function in finisher pigs. Chinese J. Anim. Sci. 37:8-10.

Feng, J., X. Liu, Y. Z. Wang and Z. R. Xu. 2006. Effects of betaine on performance, carcass characteristics and hepatic betainehomocysteine methyltransferase activity in finishing borrows. Asian-Aust. J. Anim. Sci. 19:402-405. crossref(new window)

Fernandez-Figares, I., D. Wray-Cahen, N. C. Steele, R. G. Campbell, D. D. Hall, E. Virtanen and T. J. Caperna. 2002. Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed-restricted pig. J. Anim. Sci. 80:421-428. crossref(new window)

Freeman, B. 1983. Physiology and biochemistry of the domestic fowl. In: Appendix: Biochemical and Physiological Data. Academic Press INC. London. 5:434-436.

Hazon, N. and G. Flik. 2002. Osmoregulation and drinking in vertebrates. In: Hormonal control of drinking in eels: an evolutionary approach (Ed. Y. Takei). First edn. Bios Scientific Publishers, UK.

Julian, R. K. 1993. Ascites in poultry. Avian Pathol. 22:419-454. crossref(new window)

Kalimuthu, S., Kand and R. Kadirrel. 1987. Water quality and chick growth. Indian J. Poult. Sci. 16:15-21.

Kettunen, H., S. Peuranen and K. Tiihonen. 2001. Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro. Comp. Biochem. Physiol. 129A:595-603.

Kitt, S. J., P. S. Miller, A. J. Lewis and H. Y. Chen. 1999. Effects of betaine and pen space allocation on growth performance, plasma urea concentration and carcass characteristics of growing and finishing barrows. J. Anim. Sci. 77(Suppl. 1):53(Abstr).

Klasing, K. C., K. l. Adler, J. C. Remus and C. C. Calvert. 2002. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidian-infected chicks and increases functional properties of phagocytes. J. Nutr. 132:2274-2282. crossref(new window)

LeMieux, F. M., L. L. Southern and T. D. Binder. 1996. Interactive effects of chromium tripicolinate, zinc oxide and (or) betaine on growth performance of weanling pigs. J. Anim. Sci. 74(Suppl. 1):184(Abstr.).

Loest, C. A., E. C. Drouillard, E. C. Titgemeyer, R. D. Hunter and R. H. Wessel. 1998. Betaine as a dietary supplement for finishing cattle. In Cattlemen's Day, Report of Progress 804, pp. 76-78. Manhattan, KA: Agricultural Experimental Station, Kansas State University.

Maiorka, A., N. Magro, H. Bartles, A. Kessler and J. Penz. 2004. Different sodium levels and electrolyte balances in Pre-starter diets for broilers. Braz. J. Poult. Sci. 6:143-146.

Matthews, J. O., L. L. Southern, T. D. Binder and M. A. Persica. 2001a. Effects of betaine, pen space, and slaughter handling method on growth performance, carcass traits, and pork quality of finishing barrows. J. Anim. Sci. 79:967-974. crossref(new window)

Matthews, J. O., L. L. Southern, A. D. Higbie, M. A. Persica and T. D. Binder. 2001b. Effects of betaine on growth, carcass characteristics, pork quality, and plasma metabolites in finishing pigs. J. Anim. Sci. 79:722-728. crossref(new window)

Matthews, J. O., L. L. Southern, J. E. Pontif, A. D. Higbie and T. D. Binder. 1998. Interactive effects of betaine, crude protein, and net energy in finishing pigs. J. Anim. Sci. 76:2444-2455. crossref(new window)

McDevitt, R. M., S. Mack and I. R. Wallis. 2000. Can betaine partially replace or enhance the effect of methionine by improving broiler growth and carcass characteristics? Br. Poult. Sci. 41:473-480. crossref(new window)

Mirsalimi, S. M., P. O'Brien and R. Julian. 1992. Blood volume increase in salt-induced pulmonary Hypertension, heart failure and ascites in broiler and white leghorn chickens. Can. J. Vet. Res. 57:110-113.

National Research Council. 1984. Nutrient Requirements of Poultry. 9th Ed. National Academy Press, Washington, DC.

National Research Council. 1994. Nutrient Requirements of Poultry. 9th Ed. National Academy Press, Washington, DC.

Noll, S. L., P. E. Waibel, R. D. Cook and J. A. Witmer, 1984. Biopotency of methionine sources for young turkeys. Poult. Sci. 63:2458-2470. crossref(new window)

Potter, L. M., M. Potchanakorn, V. Ravindran and E. T. Kornegay. 1995. Bioavailability of phosphorus in various phosphate sources using body weight and toe ash as response criteria. Poult. Sci. 74:813-820. crossref(new window)

Remus, J. C. and C. L. Quarles. 2000. The effect of betaine on lesion scores and tensile strength of coccidian-challenged broilers. Poult. Sci. 79(Suppl. 1):118(Abstr.).

Robbins, K. R., H. W. Norton and D. H. Baker. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109:1710-1714. crossref(new window)

ROSS, Broiler management manual. 2002. Aviagen limited, Newbridge, Midlothin EH28 8SZ, Scotland, UK.

SAS Institute Inc. 1989. SAS/STAT User's Guid: Version 6.4th edn. SAS Institute Inc., Cary, North Carolina.

Schutte, J. B., J. de Jong, W. Smink and M. Pack. 1997. Replacement value of betaine for Dl-methionine in male broiler chicks. Poult. Sci. 76:321-325. crossref(new window)

Siljander-Rasi, H., S. Peuranen, K. Tiihonen, E. Virtanen, H. Kettunen, T. Alaviuhkola and P. H. Simmins. 2003. Effect of equi-molar dietary betaine and choline addition on performance, carcass quality and physiological parameters of pigs. Anim. Sci. 76:55-62. crossref(new window)

Sklan, D. and Y. Noy. 2000. Hydrolysis and absorption in the small intestines of post hatch chicks. Poult. Sci. 79:1306-1310. crossref(new window)

Smith, J. W. II., KQ. Owen, J. L. Nelssen, R. D. Goodband, M. D. Tokach, K. G. Friesen, T. L. Lohrmann and S. A. Blum. 1994. The effects of dietary carnitine, betaine, and chromium nicotinate supplementation on growth and carcass characteristics in growing-finishing pigs. J. Anim. Sci. 72(Suppl. 1):274(Abstr.).

Urbanczyk, J. 1997. An attempt to decrease pig carcass fatness by nutritive factors. Krmiva. 39:311-325.

Urbanczyk, J., E. Hanczakowska and M. Swiatkiewycz. 1999. Betaine and organic chromium as the additives in pig nutrition. Annals of Warsaw Agricultural University, Anim. Sci. 36:133-140.

Urbanczyk, J., E. Hanczakowska and M. Swiatkiewycz. 2000. The efficiency of betaine and organic chromium compounds according to fattening pig genotype. Bulletin Naukowy Przemyslu Paszowego. 39:53-64.

Van Lunen, T. A. and P. H. Simmins. 2000. Dietary enzyme and betaine supplementation for young pigs. Can. J. Anim. Sci. 80:755-756.

Virtanen, E. and L. Rosi. 1995. Effects of betaine on methionine requirement of broilers under various environmental conditions. In Proceedings of the Aust. Poult. Sci. Symposium, Pages. 88-92. Sydney, NSW, Australia: University of Sydney.

Wang, Y. Z. 2000. Effect of betaine on growth performance and carcass traits of meat ducks. J. Zhejiang Univ. Agric. Life Sci. 26:347-352.

Wang, Y. Z. and Z. R. Xu. 1999. Effect of feeding betaine on weight gain and carcass trait of barrows and gilts and approach to mechanism. J. Zhejiang Agricultural University. 25:281-285.

Wang, Y. Z., Z. R. Xu and M. L. Chen. 2000a. Effect of betaine on carcass fat metabolism of meat duck. Chinese J. Vet. Sci. 20:409-413.

Wang, Y. Z., Z. R. Xu and J. Feng. 2000b. Study on the effect of betaine on meat quality and the mechanism in finishing pigs. Scientia Agricultura Sinica. 33:94-99.

Wang, Y. Z., Z. R. Xu, and J. Feng. 2004. The effect of betaine and DL-methionine on growth performance and carcass characteristics in meat ducks. Anim. Feed Sci. Technol. 116:151-159. crossref(new window)

Webel, D. M., F. K. McKeith and R. A. Easter. 1995. The effects of betaine supplementation on growth performance and carcass characteristics in finishing pigs. J. Anim. Sci. 73(Suppl. 1):82(Abstr.).

Yu, D. Y., J. Feng and Z. R. Xu. 2001. Effects of betaine on fat and protein metabolism in different stages of swine. Chinese J. Vet. Sci. 21:200-203.

Yu, D. Y., Z. R. Xu and W. F. Li. 2004. Effects of betaine on growth performance and carcass characteristics in growing pigs. Asian-Aust. J. Anim. Sci. 17:1700-1704. crossref(new window)

Zou, X. T. and J. J. Lu. 2002. Effects of betaine on the regulation of the lipid metabolism in laying hen. Agricultural Sciences in China. 1:1043-1049.