Advanced SearchSearch Tips
Association between Polymorphisms of MSTN and MYF5 Genes and Growth Traits in Three Chinese Cattle Breeds
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Association between Polymorphisms of MSTN and MYF5 Genes and Growth Traits in Three Chinese Cattle Breeds
Zhang, R.F.; Chen, H.; Lei, C.Z.; Zhang, C.L.; Lan, X.Y.; Zhang, Y.D.; Zhang, H.J.; Bao, B.; Niu, H.; Wang, X.Z.;
  PDF(new window)
The objective of this study was to assess the association of polymorphisms in MSTN and MYF5 genes with growth traits in three Chinese cattle breeds. Only one homozygous animal with BB genotype at MSTN locus was observed in Jiaxian population which was at Hardy-Weinberg disequilibrium (p<0.05). The frequencies of allele A at MSTN locus and allele B at MYF5 locus in the three Chinese breeds were 0.9550/0.9730/0.9720 and 0.8275/0.7581/0.7523, respectively. Allele A at MSTN locus and allele B at MYF5 locus were dominant in these three populations. No statistically significant differences in growth traits were observed between the genotypes of the Jiaxian breed at MSTN and MYF5 loci and the Nanyang breed at MYF5 locus. However, there were statistically significant differences between the genotypes at MSTN locus of the Nanyang breed for WH, HG, HGI and HGBLR (p<0.05), and of the Qinchuan breed for BLI (p<0.05). The SNP in MYF5 had significant effects on WH and HHC of Qinchuan animals (p<0.05). These results suggest that MSTN and MYF5 are strong candidate genes that influence growth traits in cattle. Other SNPs of MSTN and MYF5 or other linked genes should also be studied, which could lead to the development of selection plans to improve the performance of Chinese cattle and also promote the breeding of genuine beef cattle in China.
Cattle;MSTN;MYF5;Growth Traits;
 Cited by
Association between polymorphisms of Myf5 and POU1F1 genes with growth and carcass traits in Hanwoo (Korean cattle),;;;;;;;;;

Genes and Genomics, 2011. vol.33. 4, pp.425-430 crossref(new window)
Back fat thickness and meat tenderness are associated with a 526 T→A mutation in the exon 1 promoter region of the MyF-5 gene in Chinese Bos taurus, Genetics and Molecular Research, 2011, 10, 4, 3070  crossref(new windwow)
Association between polymorphisms of Myf5 and POU1F1 genes with growth and carcass traits in Hanwoo (Korean cattle), Genes & Genomics, 2011, 33, 4, 425  crossref(new windwow)
Polymorphisms of MRF4 and H-FABP genes association with growth traits in Qinchuan cattle and related hybrids, Molecular Biology Reports, 2011, 38, 2, 1013  crossref(new windwow)
The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle, Molecular Biology Reports, 2011, 38, 2, 755  crossref(new windwow)
Analysis of the genetic variation of vascular endothelial growth factor gene in three Chinese indigenous cattle breeds, Molecular Biology Reports, 2011, 38, 5, 3219  crossref(new windwow)
A promoter polymorphism of MSTN g.−371T>A and its associations with carcass traits in Korean cattle, Molecular Biology Reports, 2012, 39, 4, 3767  crossref(new windwow)
Candidate SNPs for carcass and meat traits in Nelore animals and in their crosses with Bos taurus, Pesquisa Agropecuária Brasileira, 2012, 47, 2, 294  crossref(new windwow)
(Hamilton, 1822), Journal of the World Aquaculture Society, 2016, 47, 5, 741  crossref(new windwow)
Genetic effect of Myf5 gene in rabbit meat quality traits, Journal of Genetics, 2017, 96, 4, 673  crossref(new windwow)
Beauchamp, J. R., L. Heslop, D. S. W. Yu, S. Tajbakhsh, R. G. Kelly, A. Wernig, M. E. Buckingham, T. A. Partridge and P. S. Zammit. 2000. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 11:1221-1234.

Braun, T., E. Bober, B. Winter, N. Rosenthal and H. H. Arnold. 1990. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 9:821-831.

Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701-709.

Casas, E., G. L. Bennett, T. P. L. Smith and L. V. Cundiff. 2004. Association of myostatin on early calf mortality, growth, and carcass composition traits in crossbred cattle. J. Anim. Sci. 82: 2913-2918. crossref(new window)

Casas, E., J. W. Keele, S. C. Fahrenkrug, T. P. L. Smith, L. V. Cundiff and R. T. Stone. 1999. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 77:1686-1692. crossref(new window)

Chen, Y. C. 1999. Morden beef production. China Agriculture Press.

Chung, E. R. and W. T. Kim. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18:1061-1065. crossref(new window)

Cieslak, D., J. Kuryl, W. Kapelansk, M. Pierzchala, S. Grajewska and M. Bocian. 2002. A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Anim. Sci. 20:77-92.

Crisa, A., C. Marchitelli, M. C. Savarese and A. Valentini. 2003. Sequence analysis of myostatin promotor in cattle. Cytogenet. Genome Res. 102:48-52. crossref(new window)

Drogemuller, C. and A. Kempers. 2000. A TaqI PCR-RFLP at the bovine myogenic factor (MYF5) gene. Anim. Genet. 31:146-147. crossref(new window)

Fausto, M. da S. C., E. F. G. Simone, S. L. Paulo, V. P. Aldrin, F. M. G. Marta, V. G. B. da S. Marcos, S. S. Alex, de M. S. Kleibe and A. de M. G. Lúcio. 2005. Association of MYF5 gene allelic variants with production traits in pigs. Genet. Molec. Biol. 28:363-369. crossref(new window)

Greenwood, T. A. and J. R. Kelsoe. 2003. Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genom. 82:511-520. crossref(new window)

Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Masabanda, R. Fries, R. Hanset and M. Georges. 1997. A deletion in the bovine myostatin gene causes the doublemuscled phenotype in cattle. Nature Genetics 17:71-74. crossref(new window)

Grosse, W. M., S. M. Kappes, W. W. Laegreid, J. W. Keele, C. G. Chitko-McKown and M. P. Heaton. 1999. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mamm. Genome. 10:1062-1069. crossref(new window)

Jiang, Y. L., N. Li, L. X. Du and C. X. Wu. 2002. Relationship of T->A mutation in the promoter region of myostatin gene with growth traits in swine. Acta Gentica Sinica. 29:413-416.

Joulia, D., H. Bernardi, V. Garandel, F. Rabenoelina, B. Vernus and G. Cabello. 2003. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Experim. Cell Res. 286:263-275. crossref(new window)

Kambadur, R., M. Sharma, T. P. Smith and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916. crossref(new window)

Klosowska, D, J. Kuryl, G. Elminowska-Wenda, W. Kapelanski, K. Walasik, M. Pierzchala, D. Cieslak and J. Bogucka. 2004. A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrian$\times$ (Polish Large White$\times$Polish Landrace) crosses. Czech. J. Anim. Sci. 49:99-107.

Langley, B., M. Thomas, A. Bishop, M. Sharma, S. Gilmour and R. Kambadur. 2002. Myostatin inhibits myoblast differentiation by downregulating MyoD expression. J. Biol. Chem. 277:49831-49840. crossref(new window)

Lee, S. J. and A. C. McPherron. 2001. Regulation of myostatin activity and muscle growth. PNAS USA. 98:9306-9311. crossref(new window)

LeHir, H., A. Nott and M. Moore. 2003. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 28:215-220. crossref(new window)

Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch and S. S. Moore. 2002. The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. J Anim Sci. 80:1187-1194. crossref(new window)

Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, C. Hansen and S. S. Moore. 2004. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J. Anim. Sci. 82:1-7. crossref(new window)

Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, J. Kneeland, C. Hansen and S. S. Moore. 2002. Identical by descent haplotype sharing analysis: Application in fine mapping of QTLs for birth weight in commerical lines of Bos taurus. Proc. 7th World Congr. Genet. Appl. Livest. Prod. Montpellier, France. 481-484.

Lin, J., B. Arnold, M. A. Della-Fera, M. J. Azain, D. L. Hartzell and C. A. Baile. 2002. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 290:701-706. crossref(new window)

Lu, W. F., J. Zhao, G. J. Wei, X. S. Shan. 2007. Cloning and prokaryotic expression of the mature fragment of the Chinese Yellow Bovine Myostatin gene. Asian-Aust. J. Anim. Sci. 20: 827-831. crossref(new window)

McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. PNAS USA. 94:12457-12461. crossref(new window)

Min, L. J. 2005. Studies on candidate gene of meat performance and QTL mapping of growth and development traits in goat (Dissertation). Northwest A&F University.

Rebbapragada, A., H. Benchabane, J. L. Wrana, A. J. Celeste and L. Attisano. 2003. Myostatin signals through a transforming growth factor $\beta$-like signaling pathway to block adipogenesis. Mol. Cell Biol. 23:7230-7242. crossref(new window)

Rios, R., I. Karneiro, V. M. Arce and J. Devesa. 2002. Myostatin is an inhibitor of myogenic differentiation. Am. J. Physiol. Cell Physiol. 282:C993-C99. crossref(new window)

Rudnicki, M. A., P. N. J. Schnegelsberg, R. H. Stead, T. Braun, H. H. Arnold and R. Jaenisch. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 75:1351-1359. crossref(new window)

Sambrook, J. and D. W. Russell. Translated by Huang Pei Tang. 2002. Molecular Cloning A Laboratory Manual. 3nd. Science Press, Beijing, China.

Shibata, M., K. Ohshima, T. Kojima, T. Muramoto, K. Matsumoto, M. Komatsu, K. Aikawa, S. Fujimura and M. Kadowaki. 2003. Nucleotide sequence of myostatin gene and its developmental expression in skeletal muscles of Japanese Black beef. J. Amin. Sci. 74:383-390.

Strail, A. and M. Kopecny. 1999. Genomic organization, sequence and polymorphism of the porcine myostatin (GDF-8; MSTN) gene. Anim. Genet. 30:462-470.

Stratil, A. and S. Cepica. 1999. Three polymorphisms in the porcine myogenic factor 5 (MYF5) gene detected by PCRRFLP. Anim. Genet. 30:79-80. crossref(new window)

Taylor, W. E., S. Bhasin, J. Artaza, F. Byhower, M. Azam, D. H. Jr. Willard, F. C. Jr. Cull and N. Gonzalez-Cadavid. 2001. Myostatin inhibits cell proliferation and protein synthesis in C2C12muscle cells. Am. J. Physiol. Endocrinol. Metab. 280:E221-E228. crossref(new window)

Te Pas, M. F. W., F. L. Harders, A. Soumillion, L. Born, W. Buist and T. H. E. Meuwissen. 1999. Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mamm. Genome. 10:123-127. crossref(new window)

Thomas, M., B. Langley, C. Berry, M. Sharma, S. Kirk, J. Bass and R. Kambadur. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275:40235-40245. crossref(new window)

Urbanski, P. and J. Kuryl. 2004. New SNPs in the coding and 5' flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. J. Appl. Genet. 45:325-329.

Wagner, K. R., X. Liu, X. Chang and R. E. Allen. 2005. Muscle regeneration in the prolonged absence of myostatin. PNAS. USA. 102:2519-2524. crossref(new window)

Zammit, P. S., J. J. Carvajal, J. P. Golding, J. E. Morgan, D. Summerbell, J. Zolnerciks, T. A. Partridge, P. W. Rigby and J. R. Beauchamp. 2004. Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Dev. Biol. 15:454-465.