Advanced SearchSearch Tips
Identification of Single Nucleotide Polymorphism of H-FABP Gene and Its Association with Fatness Traits in Chickens
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Identification of Single Nucleotide Polymorphism of H-FABP Gene and Its Association with Fatness Traits in Chickens
Wang, Yan; Shu, Dingming; Li, Liang; Qu, Hao; Yang, Chunfen; Zhu, Qing;
  PDF(new window)
Heart fatty acid-binding protein gene (H-FABP) is an important candidate gene for meat quality. One of the objectives of this study was to screen single nucleotide polymorphisms (SNP) of chicken H-FABP gene among 252 individuals that included 4 Chinese domestic chicken breeds (Fengkai Xinghua (T04), Huiyang Huxu (H), Qingyuan Ma (Q), Guangxi Xiayan (S1)), 2 breeds developed by the Institute of Animal Science, Guangdong Academy of Agricultural Sciences (Lingnan Huang (DC), dwarf chicken (E4)) and one introduced broiler (Abor Acre (AA)). Another objective of this study was to analyze the associations between polymorphisms of the H-FABP gene and fat deposition traits in chickens. PCR-SSCP was used to analyze SNPs in H-FABP and 4 SNPs (T260C, G675A, C783T and G2778A) were detected. Associations between polymorphic loci and intramuscular fat (IMF), abdominal fat weight (AFW) and abdominal fat percentage (AFP) were analyzed by ANCOVA method. The results showed that the T260C genotypes were significantly associated with IMF (p = 0.0233) and AFP (p = 0.0001); the G675A genotypes were significantly associated with AFW, AFP (p<0.01) and IMF (p<0.05); at the C783T locus, AFW and AFP differed highly between genotypes. However, the G2778A loci did not show any significant effect on fat deposition traits in this study. In addition, we found that there were some differences between AFP and definite haplotypes through a nonparametric statistical method, so the haplotypes based on the SNPs except G2778A loci were also significantly associated with IMF, AFW (g) (p<0.05) and AFP (%) (p<0.001). Significantly and suggestively dominant effects of H4H4 haplotype were observed for IMF and the H2H3 was dominant for AFW (g) and AFP (%). The results also revealed that H5H7 haplotype had a negative effect on IMF, while the H5H6 had a positive effect on AFW (g) and AFP (%).
Chicken;H-FABP Gene;Single Nucleotide Polymorphism (SNP);Fat Deposition Traits;PCR-SSCP;
 Cited by
Estimation of Interaction Effects among Nucleotide Sequence Variants in Animal Genomes,;;

아세아태평양축산학회지, 2009. vol.22. 1, pp.124-130 crossref(new window)
Gene Expression of Heart and Adipocyte Fatty Acid-binding Protein in Chickens by FQ-RT-PCR,;;;;;;

아세아태평양축산학회지, 2010. vol.23. 8, pp.987-992 crossref(new window)
Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens,;;;;;;;;;;;

아세아태평양축산학회지, 2015. vol.28. 6, pp.763-770 crossref(new window)
Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken,;;;;;;;

아세아태평양축산학회지, 2015. vol.28. 10, pp.1380-1387 crossref(new window)
Relationships Between Single Nucleotide Polymorphisms of the H-FABP Gene and Slaughter and Meat Quality Traits in Chicken, Biochemical Genetics, 2009, 47, 7-8, 511  crossref(new windwow)
Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing, BMC Genetics, 2015, 16, 1  crossref(new windwow)
Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken, Asian-Australasian Journal of Animal Sciences, 2015, 28, 10, 1380  crossref(new windwow)
Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens, Asian-Australasian Journal of Animal Sciences, 2015, 28, 6, 763  crossref(new windwow)
Association of H-FABP gene polymorphisms with intramuscular fat content in Three-yellow chickens and Hetian-black chickens, Journal of Animal Science and Biotechnology, 2016, 7, 1  crossref(new windwow)
Correlation of the A-FABP Gene Polymorphism and mRNA Expression with Intramuscular Fat Content in Three-Yellow Chicken and Hetian-Black Chicken, Animal Biotechnology, 2017, 28, 1, 37  crossref(new windwow)
Banaszak, L., N. Winter, Z. H. Xu, D. A. Bernlohr, S. Cowan and T. A. Jones. 1994. Lipid-binding proteins: A family of fatty acid and retinoid transport proteins. J. Adv. Prot. Chem. 45: 89-151. crossref(new window)

Binas, B., H. Danneberg, J. McWhir, L. Mullins and A. J. Clark. 1999. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. J. FASEB. 13:805-812.

Brandstetter, A. M., H. Sauerwein, J. H. Veerkamp, Y. Gaey and J. F. Hocquette. 2002. Effects of muscle type, castration, age and growth rate on H-FABP expression in bovine skeletal muscle. J. Livest. Prod. Sci. 75:199-208. crossref(new window)

Choi, C. H., B. W. Cho, G. J. Jeon and H. K. Lee. 2006. Identification of novel SHPs with effect on economic traits in uncoupling protein gene of Korean native chicken. Asian-Aust. J. Anim. Sci. 19(8):1065-1070.

Chmurzynska, A. 2006. The multigene family of fatty acid-binding proteins (FABPs): functions, structure and polymorphism. J. Appl. Genet. 47(1):39-48. crossref(new window)

Chang, W., J. Rickers-Haunerland and N. H. Haunerland. 2001. Induction of cardiac FABP gene expression by long chain fatty acids in cultured rat muscle cells. J. Mol. Cell. Biochem. 221: 127-132. crossref(new window)

Carey, J. O., P. D. Neufer, R. P. Farrar, J. H. Veerkamp and G. L. Dohm. 1994. Transcriptional regulation of muscle fatty-acid binding protein. J. Biochem. 298:613-617.

Clavel, S., L. Farout, M. Briand, Y. Briand and P. Jouanel. 2002. Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart. Eur. J. Appl. Physiol. 87:193-201. crossref(new window)

Daly, M. J., J. D. Rioux and S. F. Schaffner. 2001. High-resolution haplotype structure in the human genome. J. Nat. Genet. 29:229-232. crossref(new window)

Glatz, J. F. and J. H. Veerkamp. 1985. Intracellular fatty-acid binding proteins. Int. J. Biochem. 17:13-22. crossref(new window)

Glatz, J. F. C. and G. Van der Vusse. 1996. Cellular fatty acidbinding proteins: their function and physiological significance. J. Prog. Lipid. Res. 3535(3):243-282

Gerbens, F., G. Rettenberqer, J. A. Lenstra, J. H. Veerkamp and M. F. te Pas. 1997. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. J. Mamm. Genome. 8(5):328-332. crossref(new window)

Gerbens, F., A. J. van Erp, F. L. Harders, F. J. Verburg, T. H. Meuwissen, J. H. Veerkamp and M. F. te Pas. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77(4):846-852.

Gerbens, F., D. J. de Koning, F. L. Harders, T. H. Meuwissen, L. L. Janss, M. A. Groenen, J. H. Veerkamp, J. A. Van Arendonk and M. F. Te Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559.

Hunt, C. R., J. H. Ro, D. E. Dobson, H. Y. Min and B. M. Spiegelman. 1986. Adipocyte P2 gene: Developmental expression and homology of 5′-flanking sequences among fat cell specific genes. J. Proc. Natl. Acad. Sci. 83:3786-3790. crossref(new window)

Hayasaka, K., M. Himoro, G. Takada, E. Takahashi, S. Minoshima and N. Shimizu. 1993. Structure and localization of the gene encoding human peripheral myelin protein 2 (PMP2). J. Genomics. 18(2):244-248. crossref(new window)

Hertzel, A. V. and D. A. Bernlohr. 2000. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. J. Trends. Endocrinol. Metab. 11(5): 175-180. crossref(new window)

Haunerland, N. H. 1994. Fatty acid binding protein in locust and mammalian muscle. Comparison of structure, function and regulation. J. Comp. Biochem. Phys. B Biochem. Mol. Biol. 109:199-208. crossref(new window)

Huang, Q. Q., Y. X. Fu and E. Boerwinkle. 2003. Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. J. Hum. Genet. 113:253-257. crossref(new window)

Ovilo, C., A. Oliver, J. L. Noguera, A. Clop, C. Barragan, L. Varona, C. Rodriguez, M. Toro, A. Sanchez, M. Perez-Enciso and L. Silio. 2002. Test for positional candidate genes for body composition on pig chromosome 6. J. Genet. Sel. Evol. 34(4): 465-479. crossref(new window)

Stephens, M., N. Smith and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68:978-989. crossref(new window)

Stephens, J. C., J. A. Schneider, D. A. Tanguay, J. Choi, T. Acharya, S. E. Stanley, R. Jiang, C. J. Messer, A. Chew, J. H. Han, J. Duan, J. L. Carr, M. S. Lee, B. Koshy, A. M. Kumar, G. Zhang, W. R. Newell, A. Windemuth, C. Xu, T. S. Kalbfleisch, S. L. Shaner, K. Arnold, V. Schulz, C. M. Drysdale, K. Nandabalan, R. S. Judson, G. Ruano and G. F. Vovis. 2001a. Haplotype variations and linkage disequilibrium in 313 human genes. J. Sci. 293:489-493. crossref(new window)

Treuner, M., C. A. Kozak, D. Gallahan, R. Grosse and T. Muller. 1994. Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acidbinding protein. J. Gene. 147(2):237-242. crossref(new window)

Li, C. Y. and H. Li. 2006. Associaion of MC4R gene polymorphisms with growth and body composition traits in chicken. Asian-Aust. J. Anim. Sci. 19(6):763-768.

Li, W. F., S. Z. Xu, H. H. Chao and H. B. Li. 2004. Genetic Variation in Intron1 of H-FABP Gene in Three Bovine Hybrids and the Relationships with Meat Quality Trait. J. Acta. Veterinaria et Zootechnica. Sinica. 35(3):252-255.

Li, W. J., H. B. Li, J. Wen, J. L. Chen, G. P. Zhao and M. Q. Zheng. 2006. Association of the H-FABP and A-HABP gene expression with intramuscular fat content in chicken. J. Acta. Veterinaria et Zootechnica. Sinica. 37(5):417-423.

Meng, H., J. G. Zhao, Z. H. Li and H. Li. 2005. Single nucleotide polymorphisms on peroxisome proliferators-activated receptor genes associated with fatness traits in chicken. Asian-Aust. J. Anim. Sci. 18(9):1221-1225.

McArthur, M. J., B. P. Atshaves, A. Frolov, W. D. Foxworth, A. B. Kier and F.Schroeder. 1999. Cellular uptake and intracellular trafficking of long chain fatty acids. J. Lipid. Res. 40:1371-1383.

Norbert, H., Haunerlanda and Friedrich Spener. 2004. Properties and physiological significance of fatty acid binding proteins. J. Adv. Mol. Cell. Biol. 33:99-123.

Wang, Y., H. Li, Y. D. Zhang, Z. L. Gu, Z. H. Li and Q. G. Wang. 2006. Analysis on association of a SNP in the chicken OBR gene with growth and body composition traits. Asian-Aust. J. Anim. Sci. 19(12):1706-1710.

Ye, M. H., H. H. Cao, J. Wen, H. B. Li, J. L. Chen and G. P. Zhao. 2003. RFLPs at Heart and Adipocyte Fatty Acid Binding Protein Genes in Beijing Oil Chick and Aijiao Chick. J. Acta. Veterinaria. et Zootechnica. Sinica. 34(5):422-426.

You, X. Y., Y. P. Liu, Q. Zhu and Z. Q. Yang. 2007. Study on SNP of the H-FABP gene and its association with slaughter performance in chicken. J. Hereditas (Beijing). 29(2):230-234. crossref(new window)

Zimmerman, A. W. and J. H. Veerkamp. 2002. New insights into the structure and function of fatty acid-binding proteins. J. Cell. Mol. Life Sci. 59:1096-1116. crossref(new window)

Zanotti, G. 1999. Muscle fatty acid-binding protein. J. Biochim. Biophys. Acta. 1441:94-105.

Zhang, W. H., A. Collins and N. E. Morton. 2004. Does haplotype diversity predict power for association mapping of disease susceptibility. J. Hum. Genet. 115:157-164.